Reachability Algorithm for Biological Piecewise-Affine Hybrid Systems

  • Anil Aswani
  • Claire Tomlin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4416)


We consider a class of qualitative biological models which describe species (e.g. protein) interactions in terms of promotion or inhibition, from which a piecewise-affine (PWA) hybrid system model can be generated. These models have a special structure under which negative feedback is a necessary condition for the presence of limit cycles, centers, and foci. We describe modifications to reachability algorithms to take advantage of this special structure, and we give conditions on the qualitative model for termination of the algorithm. An example of applying the algorithm to a simple biological system is given.


Equilibrium Point Hybrid System Qualitative Model Hybrid Automaton Genetic Regulatory Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lygeros, J., Tomlin, C., Sastry, S.: Controllers for reachability specifications for hybrid systems. Automatica 35(3), 349–370 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Gouzé, J.-L., Sari, T.: A class of piecewise linear differential equations arising in biological models. Dynamical Systems 17(4), 299–316 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    de Jong, H., et al.: Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bulletin of Mathematical Biology 66(2), 301–340 (2004)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Ghosh, R., Tomlin, C.: Symbolic reachable set computation of piecewise affine hybrid automata and its application to biological modelling: Delta-Notch protein signalling. Systems Biology 1(1), 170–183 (2005)CrossRefGoogle Scholar
  5. 5.
    von Dassow, G., Odell, G.M.: Design and constraints of the Drosophila segment polarity module. Journal of Experimental Zoology 294, 179–215 (2002)CrossRefGoogle Scholar
  6. 6.
    Bouajjani, A., Fernandez, J.-C., Halbwachs, N.: Minimal model generation. In: Clarke, E., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 197–203. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  7. 7.
    Belta, C., et al.: Computational techniques for analysis of genetic network dynamics. International Journal of Robotics Research 24(2-3) (2005)Google Scholar
  8. 8.
    Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Girard, A., Le Guernic, C., Maler, O.: Efficient computation of reachable sets of linear time-invariant systems with inputs. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 257–271. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Anil Aswani
    • 1
  • Claire Tomlin
    • 1
  1. 1.University of California at Berkeley, Dept. of Electrical Engineering and Computer Sciences 

Personalised recommendations