Comparing Forward and Backward Reachability as Tools for Safety Analysis

  • Ian M. Mitchell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4416)

Abstract

Using only the existence and uniqueness of trajectories for a generic dynamic system with inputs, we define and examine eight types of forward and backward reachability constructs. If the input is treated in a worst-case fashion, any forward or backward reach set or tube can be used for safety analysis, but if the input is treated in a best-case fashion only the backward reach tube always provides the correct results. Fortunately, forward and backward algorithms can be exchanged if well-posed reverse time trajectories can be defined. Unfortunately, backward reachability constructs are more likely to suffer from numerical stability issues, especially in systems with significant contraction—the very systems where forward simulation and reachability are most effective.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hiskens, I.A., Pai, M.A.: Trajectory sensitivity analysis of hybrid systems. IEEE Transactions on Circuits and Systems 47(2), 204–220 (2000)CrossRefGoogle Scholar
  2. 2.
    Han, Z., Krogh, B.H.: Reachability analysis of large-scale affine systems using low-dimensional polytopes. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 287–301. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Henzinger, T.A., Ho, P.H., Wong-Toi, H.: Algorithmic analysis of nonlinear hybrid systems. IEEE Transactions on Automatic Control 43(4), 540–554 (1998)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Greenstreet, M., Mitchell, I.: Reachability analysis using polygonal projections. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 103–116. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Bemporad, A., Torrisi, F.D., Morari, M.: Optimization-based verification and stability characterization of piecewise affine and hybrid systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 45–59. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Girard, A., Guernic, C.L., Maler, O.: Efficient computation of reachable sets of linear time-invariant systems with inputs. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 257–271. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Kurzhanski, A.B., Varaiya, P.: Reachability analysis for uncertain systems—the ellipsoidal technique. Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithms 9(3), 347–367 (2002)MATHMathSciNetGoogle Scholar
  8. 8.
    Saint-Pierre, P.: Hybrid kernels and capture basins for impulse constrained systems. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 378–392. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Mitchell, I.M., Bayen, A.M., Tomlin, C.J.: A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games. IEEE Transactions on Automatic Control 50(7), 947–957 (2005)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Gao, Y., Lygeros, J., Quincampoix, M.: The reachability problem for uncertain hybrid systems revisited: The viability theory perspective. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 242–256. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 465–478. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Kloetzer, M., Belta, C.: Reachability analysis of multi-affine systems. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 348–362. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Johansson, M., Rantzer, A.: Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Transactions on Automatic Control 43(4), 555–559 (1998)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Stangier, C., Sidle, T.: Invariant checking combining forward and backward traversal. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 414–429. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Broucke, M., Arapostathis, A.: Continuous selections of trajectories of hybrid systems. Systems and Control Letters 47, 149–157 (2002)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lygeros, J., et al.: Dynamical properties of hybrid automata. IEEE Transactions on Automatic Control 48(1), 2–17 (2003)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Evans, L.C., Souganidis, P.E.: Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations. Indiana University Mathematics Journal 33(5), 773–797 (1984)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Mitchell, I.M.: Comparing forward and backward reachability as tools for safety analysis. Technical Report TR-2006-23, Department of Computer Science, University of British Columbia, Vancouver, BC, Canada (2006)Google Scholar
  20. 20.
    Hiskens, I.A.: Non-uniqueness in reverse time of hybrid system trajectories. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 339–353. Springer, Heidelberg (2005)Google Scholar
  21. 21.
    Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. Society for Industrial and Applied Mathematics, Philadelphia (1998)MATHGoogle Scholar
  22. 22.
    Yuan, J., Svensson, C.: High-speed CMOS circuit technique. IEEE Journal of Solid-State Circuits 24(1), 62–70 (1989)CrossRefGoogle Scholar
  23. 23.
    Hodges, D.A., Jackson, H.G., Saleh, R.A.: Analysis and Design of Digital Integrated Circuits in Deep Submicron Technology, 3rd edn. McGraw Hill, New York (2004)Google Scholar
  24. 24.
    Greenstreet, M.R.: Verifying safety properties of differential equations. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 277–287. Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Ian M. Mitchell
    • 1
  1. 1.Department of Computer Science, University of British Columbia, 2366 Main Mall, Vancouver, BC, V6T 1Z4Canada

Personalised recommendations