CEGAR Based Bounded Model Checking of Discrete Time Hybrid Systems

  • Federico Mari
  • Enrico Tronci
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4416)


Many hybrid systems can be conveniently modeled as Piecewise Affine Discrete Time Hybrid Systems PA-DTHS. As well known Bounded Model Checking (BMC) for such systems comes down to solve a Mixed Integer Linear Programming (MILP) feasibility problem.

We present a SAT based BMC algorithm for automatic verification of PA-DTHSs. Using Counterexample Guided Abstraction Refinement (CEGAR) our algorithm gradually transforms a PA-DTHS verification problem into larger and larger SAT problems.

Our experimental results show that our approach can handle PA-DTHSs that are more then 50 times larger than those that can be handled using a MILP solver.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Alur, R., Henzinger, T.A., Ho, P.-H.: Automatic symbolic verification of embedded systems. IEEE Trans. on Software Engineering 22 (1996)Google Scholar
  3. 3.
    Audermand, G., et al.: Verifying industrial hybrid systems with mathsat. In: Proc. of the 2nd Int. Workshop on Bounded Model Checking (2004)Google Scholar
  4. 4.
    Bemporad, A., Morari, M.: Verification of hybrid systems via mathematical programming. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Biere, A., et al.: Symbolic model checking without bdds. In: Cleaveland, W.R. (ed.) ETAPS 1999 and TACAS 1999. LNCS, vol. 1579, Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Bozzano, M., et al.: Efficient satisfiability modulo theories via delayed theory combination. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, Springer, Heidelberg (2005)Google Scholar
  7. 7.
  8. 8.
    Carter, M.W., Price, C.C.: Operations Research - A Practical Introduction. CRC Press, Boca Raton (2001)Google Scholar
  9. 9.
  10. 10.
    Clarke, E., Kroening, D.: Hardware Verification using ANSI-C Programs as a Reference. In: Proc. of ASP-DAC, IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  11. 11.
    Clarke, E.M., et al.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Della Penna, G., et al.: Exploiting transition locality in automatic verification of finite state concurrent systems. International Journal of Software Tools for Technology Transfer (STTT) 6(4) (2004)Google Scholar
  14. 14.
    Raimi, R., et al.: Bounded model checking using satisfiability solving. Formal Methods in system Design 19, 7–34 (2001)MATHCrossRefGoogle Scholar
  15. 15.
    Giorgetti, N., Pappas, G.J., Bemporad, A.: Bounded model checking of hybrid dynamical systems. In: Proc. of 44th IEEE Int Conf. CDC, IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  16. 16.
  17. 17.
    Gupta, A., Strichman, O.: Abstraction refinement for bounded model checking. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 112–124. Springer, Heidelberg (2005)Google Scholar
  18. 18.
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Hytech: A model checker for hybrid systems. Software Tools for Technology Transfer 1 (1997)Google Scholar
  19. 19.
  20. 20.
    Larsen, K.G., Pettersson, P., Yi, W.: Uppaal: Status and developments. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, Springer, Heidelberg (1997)Google Scholar
  21. 21.
    Li, B., Wang, C., Somenzi, F.: Abstraction refinement in symbolic model checking using satisfiability as the only decision procedure. Software Tools for technology Transfer (STTT) 7(2), 143–155 (2005)CrossRefGoogle Scholar
  22. 22.
  23. 23.
    McMillan, K.L.: Symbolic Model Checking: An Approach to the State Explosion Problem. Kluwer Academic Publishers, Dordrecht (1993)Google Scholar
  24. 24.
    Moskewicz, M.W., et al.: Chaff: Engineering an efficient sat solver. In: 39th DAC (2001)Google Scholar
  25. 25.
    Della Penna, G., et al.: Automatic verification of a turbogas control system with the murphi verifier. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, Springer, Heidelberg (2003)Google Scholar
  26. 26.
  27. 27.
    Torrisi, F.D., Bemporad, A.: Hysdel - a tool for generating computational hybrid models. IEEE Trans. on Control Systems Technology 12(2), 235–249 (2004)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Turk, A.L., Probst, S.T., Powers, G.J.: Verification of real-time chemical processing systems. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201, Springer, Heidelberg (1997)CrossRefGoogle Scholar
  29. 29.
  30. 30.
    Vidal, R., et al.: Decidable and semi-decidable controller synthesis for classes of discrete time hybrid systems. In: Proc. of 40th IEEE CDC, IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  31. 31.
  32. 32.

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Federico Mari
    • 1
  • Enrico Tronci
    • 1
  1. 1.Dipartimento di Informatica, Università di Roma “La Sapienza”, Via Salaria 113, 00198 RomaItaly

Personalised recommendations