Advertisement

CEGAR Based Bounded Model Checking of Discrete Time Hybrid Systems

  • Federico Mari
  • Enrico Tronci
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4416)

Abstract

Many hybrid systems can be conveniently modeled as Piecewise Affine Discrete Time Hybrid Systems PA-DTHS. As well known Bounded Model Checking (BMC) for such systems comes down to solve a Mixed Integer Linear Programming (MILP) feasibility problem.

We present a SAT based BMC algorithm for automatic verification of PA-DTHSs. Using Counterexample Guided Abstraction Refinement (CEGAR) our algorithm gradually transforms a PA-DTHS verification problem into larger and larger SAT problems.

Our experimental results show that our approach can handle PA-DTHSs that are more then 50 times larger than those that can be handled using a MILP solver.

Keywords

Feasibility Problem Conjunctive Normal Form Satisfying Assignment Symbolic Model Check Bound Model Check 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Alur, R., Henzinger, T.A., Ho, P.-H.: Automatic symbolic verification of embedded systems. IEEE Trans. on Software Engineering 22 (1996)Google Scholar
  3. 3.
    Audermand, G., et al.: Verifying industrial hybrid systems with mathsat. In: Proc. of the 2nd Int. Workshop on Bounded Model Checking (2004)Google Scholar
  4. 4.
    Bemporad, A., Morari, M.: Verification of hybrid systems via mathematical programming. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Biere, A., et al.: Symbolic model checking without bdds. In: Cleaveland, W.R. (ed.) ETAPS 1999 and TACAS 1999. LNCS, vol. 1579, Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Bozzano, M., et al.: Efficient satisfiability modulo theories via delayed theory combination. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, Springer, Heidelberg (2005)Google Scholar
  7. 7.
  8. 8.
    Carter, M.W., Price, C.C.: Operations Research - A Practical Introduction. CRC Press, Boca Raton (2001)Google Scholar
  9. 9.
  10. 10.
    Clarke, E., Kroening, D.: Hardware Verification using ANSI-C Programs as a Reference. In: Proc. of ASP-DAC, IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  11. 11.
    Clarke, E.M., et al.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Della Penna, G., et al.: Exploiting transition locality in automatic verification of finite state concurrent systems. International Journal of Software Tools for Technology Transfer (STTT) 6(4) (2004)Google Scholar
  14. 14.
    Raimi, R., et al.: Bounded model checking using satisfiability solving. Formal Methods in system Design 19, 7–34 (2001)zbMATHCrossRefGoogle Scholar
  15. 15.
    Giorgetti, N., Pappas, G.J., Bemporad, A.: Bounded model checking of hybrid dynamical systems. In: Proc. of 44th IEEE Int Conf. CDC, IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  16. 16.
  17. 17.
    Gupta, A., Strichman, O.: Abstraction refinement for bounded model checking. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 112–124. Springer, Heidelberg (2005)Google Scholar
  18. 18.
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Hytech: A model checker for hybrid systems. Software Tools for Technology Transfer 1 (1997)Google Scholar
  19. 19.
  20. 20.
    Larsen, K.G., Pettersson, P., Yi, W.: Uppaal: Status and developments. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, Springer, Heidelberg (1997)Google Scholar
  21. 21.
    Li, B., Wang, C., Somenzi, F.: Abstraction refinement in symbolic model checking using satisfiability as the only decision procedure. Software Tools for technology Transfer (STTT) 7(2), 143–155 (2005)CrossRefGoogle Scholar
  22. 22.
  23. 23.
    McMillan, K.L.: Symbolic Model Checking: An Approach to the State Explosion Problem. Kluwer Academic Publishers, Dordrecht (1993)Google Scholar
  24. 24.
    Moskewicz, M.W., et al.: Chaff: Engineering an efficient sat solver. In: 39th DAC (2001)Google Scholar
  25. 25.
    Della Penna, G., et al.: Automatic verification of a turbogas control system with the murphi verifier. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, Springer, Heidelberg (2003)Google Scholar
  26. 26.
  27. 27.
    Torrisi, F.D., Bemporad, A.: Hysdel - a tool for generating computational hybrid models. IEEE Trans. on Control Systems Technology 12(2), 235–249 (2004)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Turk, A.L., Probst, S.T., Powers, G.J.: Verification of real-time chemical processing systems. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201, Springer, Heidelberg (1997)CrossRefGoogle Scholar
  29. 29.
  30. 30.
    Vidal, R., et al.: Decidable and semi-decidable controller synthesis for classes of discrete time hybrid systems. In: Proc. of 40th IEEE CDC, IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  31. 31.
  32. 32.

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Federico Mari
    • 1
  • Enrico Tronci
    • 1
  1. 1.Dipartimento di Informatica, Università di Roma “La Sapienza”, Via Salaria 113, 00198 RomaItaly

Personalised recommendations