Advertisement

Robust Test Generation and Coverage for Hybrid Systems

  • A. Agung Julius
  • Georgios E. Fainekos
  • Madhukar Anand
  • Insup Lee
  • George J. Pappas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4416)

Abstract

Testing is an important tool for validation of the system design and its implementation. Model-based test generation allows to systematically ascertain whether the system meets its design requirements, particularly the safety and correctness requirements of the system. In this paper, we develop a framework for generating tests from hybrid systems’ models. The core idea of the framework is to develop a notion of robust test, where one nominal test can be guaranteed to yield the same qualitative behavior with any other test that is close to it. Our approach offers three distinct advantages. 1) It allows for computing and formally quantifying the robustness of some properties, 2) it establishes a method to quantify the test coverage for every test case, and 3) the procedure is parallelizable and therefore, very scalable. We demonstrate our framework by generating tests for a navigation benchmark application.

Keywords

Hybrid System State Trajectory Coverage Criterion Robust Testing Hybrid Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dang, T., Maler, O.: Reachability analysis via face lifting. In: Henzinger, T.A., Sastry, S.S. (eds.) HSCC 1998. LNCS, vol. 1386, pp. 96–109. Springer, Heidelberg (1998)Google Scholar
  2. 2.
    Kurzhanski, A.B., Varaiya, P.: Ellipsoidal technique for reachability analysis. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 202–214. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Mitchell, I., Tomlin, C.J.: Level set methods in for computation in hybrid systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 310–323. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Alur, R., Dang, T., Ivancic, F.: Reachability analysis of hybrid systems via predicate abstraction. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 35–48. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Han, Z., Krogh, B.H.: Reachability analysis of hybrid control systems using reduced-order. In: Proc. American Control Conference, pp. 1183–1189 (2004)Google Scholar
  6. 6.
    Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Fehnker, A., Ivancic, F.: Benchmarks for hybrid systems verification. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Esposito, J.M.: Randomized test case generation for hybrid systems: metric selection. In: Proc. 36th Southeastern Symposium of System Theory (2004)Google Scholar
  11. 11.
    Branicky, M.S., et al.: RRTs for nonlinear, discrete, and hybrid planning and control. In: Proc. IEEE Conf. Decision and Control, Hawaii, USA, IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  12. 12.
    van Osch, M.: Automated model-based testing of χ simulation models with TorX. In: Reussner, R., et al. (eds.) QoSA 2005 and SOQUA 2005. LNCS, vol. 3712, pp. 227–241. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Esposito, J.M.: Automated test trajectory for hybrid systems. In: Proc. 35th Southeastern Symposium of System Theory (2003)Google Scholar
  14. 14.
    Tan, L., Kim, J., Lee, I.: Testing and monitoring model-based generated program. Electronic Notes in Theoretical Computer Science 89(2) (2003), http://www.elsevier.nl/locate/lntcs/volume89.html
  15. 15.
    Hong, H.S., et al.: A temporal logic based theory of test coverage and generation. In: Katoen, J.-P., Stevens, P. (eds.) ETAPS 2002 and TACAS 2002. LNCS, vol. 2280, pp. 327–341. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Alur, R., et al.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138, 3–34 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous systems. Accepted for publication on IEEE Trans. Automatic Control (March 2005)Google Scholar
  18. 18.
    Lohmiller, W., Slotine, J.J.E.: On contraction analysis for nonlinear systems. Automatica 34(6), 683–696 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Aylward, E., Parillo, P.A., Slotine, J.J.E.: Algorithmic search for contraction metrics via sos programming. In: Proc. American Control Conference, Minneapolis, USA (2006)Google Scholar
  20. 20.
    Brogan, W.L.: Modern control theory. Prentice Hall International, New Jersey (1991)zbMATHGoogle Scholar
  21. 21.
    LaValle, S.M.: Planning algorithms. Cambridge University Press, Cambridge (2006)zbMATHGoogle Scholar
  22. 22.
    Makhlouf, I.B., Kowalewski, S.: An evaluation of two recent reachability analysis tools for hybrid systems. In: Proc. IFAC Conf. Analysis and Design of Hybrid Systems, Alghero, Italy, pp. 377–382. IFAC (2006)Google Scholar
  23. 23.
    Fainekos, G.E., Girard, A., Pappas, G.J.: Temporal logic verification using simulation. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 171–186. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Julius, A.A.: Approximate abstraction of stochastic hybrid automata. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 318–332. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    D’Innocenzo, A., Di Benedetto, M.D., Di Gennaro, S.: Observability of hybrid automata by abstraction. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 169–183. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • A. Agung Julius
    • 1
  • Georgios E. Fainekos
    • 2
  • Madhukar Anand
    • 2
  • Insup Lee
    • 2
  • George J. Pappas
    • 1
  1. 1.University of Pennsylvania, Department of Electrical and Systems Engineering, 200 South 33rd Street, Philadelphia PA-19104USA
  2. 2.University of Pennsylvania, Department of Computer and Information Sciences, 200 South 33rd Street, Philadelphia PA-19104USA

Personalised recommendations