Advertisement

Volumetric Bias Correction

  • Edoardo Ardizzone
  • Roberto Pirrone
  • Salvatore La Bua
  • Orazio Gambino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4418)

Abstract

This paper presents a method to suppress the bias artifact, also known as RF-inhomogeneity, in Magnetic Resonance Imaging (MRI). This artifact produces illumination variations due to magnetic field fluctuations of the device. In the latest years many works have been devoted to face this problem. In this work we present the 3D version of a new approach to bias correction, which is called Exponential Entropy Driven Homomorphic Unsharp Masking (E 2 D − HUM). This technique has been already presented by some of the authors for the 2D case only. The description of the whole method is detailed, and some experimental results are reported.

Keywords

Bias Correction Shannon Entropy Intensity Nonuniformity Magnetic Resonance Image Medical Magnetic Resonance Image Simulator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ardizzone, E., Pirrone, R., Gambino, O.: Exponential Entropy Driven HUM on Knee MR Images. In: Proc. of IEEE XXVII Engineering in Medicine and Biology Conference, Shanghai, China, 4–7 September, 2005, IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  2. 2.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function. Plenum Press, New York (1981)zbMATHGoogle Scholar
  3. 3.
    Nelder, J.A., Mead, R.: A Simplex Method for Function Minimization. Comput. J. 7, 308–313 (1965)Google Scholar
  4. 4.
    Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imag. 17, 87–97 (1998)CrossRefGoogle Scholar
  5. 5.
    Ashburner, J., Friston, K.: MRI sensitivity correction and tissue classification. NeuroImage 7, S706 (1998)Google Scholar
  6. 6.
    De Deene, Y.: Fundamentals of MRI measurements for gel dosimetry. Journal of Physics: Conference Series 3, 87–114 (2004)CrossRefGoogle Scholar
  7. 7.
    Johnston, B., et al.: Segmentation of Multide Sclerosis Lesions in Intensity Corrected Multispectral MRI. IEEE Transaction On Medical Imaging 15(2) (1996)Google Scholar
  8. 8.
    Styner, M., et al.: Parametric estimate of intensity inhomogeneities applied to MRI Medical Imaging. IEEE Transactions on Medical Imaging 22, 153–165 (2000)CrossRefGoogle Scholar
  9. 9.
    Vokurka, E.A., Thacker, N.A., Jackson, A.: A fast model independent method for automatic correction of intensity nonuniformity in MRI data. J. Magn. Reson. Imag. 10, 550–562 (1999)CrossRefGoogle Scholar
  10. 10.
    Guillemaud, R.: Uniformity Correction with Homomorphic filtering on Region of Interest. In: IEEE International Conference on Image Processing, vol. 2, pp. 872–875. IEEE, Los Alamitos (1998)Google Scholar
  11. 11.
    Dawant, B.M., Zijdenbos, A.P., Margolin, R.A.: Correction of Intensity Variations in MR Images for Computer-Aided Tissue Classification. IEEE Transactions on Medical Imaging 12, 770–781 (1993)CrossRefGoogle Scholar
  12. 12.
    Axel, L., Costantini, J., Listerud, J.: Intensity Correction in Surface Coil MR Imaging. American Journal on Roentgenology 148, 418–420 (1987)Google Scholar
  13. 13.
    Tincher, M., et al.: Polynomial Modelling and Reduction of RF Body Coil Spatial Inhomogeneity in MRI. IEEE Transactions on Medical Imaging 12, 361–365 (1993)CrossRefGoogle Scholar
  14. 14.
    Brinkmann, B.H., Manduca, A., Robb, R.A.: Optimized Homomorphic Unsharp Masking for MR Greyscale Inhomogeneity Correction. IEEE Transactions on Medical Imaging 17, 161–171 (1998)CrossRefGoogle Scholar
  15. 15.
    Likar, B., Viergever, M.A., Pernus, F.: Retrospective Correction of MR Intensity Inhomogeneity by Information Minimization. IEEE Transactions on Medical Imaging 20, 1398–1410 (2001)CrossRefGoogle Scholar
  16. 16.
    Kwan, R.K.S., Evans, A.C., Pike, G.B.: MRI simulation-based evaluation of image-processing and classification methods. IEEE Transactions on Medical Imaging 18(11), 1085–1097 (1999)CrossRefGoogle Scholar
  17. 17.
    Kwan, R.K.S., Evans, A.C., Pike, G.B.: An Extensible MRI Simulator for Post-Processing Evaluation. In: Höhne, K.H., Kikinis, R. (eds.) VBC 1996. LNCS, vol. 1131, pp. 135–140. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  18. 18.
    Arnold, J.B., et al.: Quantitative and Qualitive Evaluation of Six Algorithms for Correcting Intensity Non-Uniformity Effects. Neuroimage 13(5), 931–943 (2001)CrossRefGoogle Scholar
  19. 19.
    Brechbuhler, C., Gerig, G., Szekely, G.: Compensation of spatial inhomogeneity in MRI based on a multi-valued image model and a parametric bias estimate. In: Höhne, K.H., Kikinis, R. (eds.) VBC 1996. LNCS, vol. 1131, pp. 141–146. Springer, Heidelberg (1996)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Edoardo Ardizzone
    • 1
  • Roberto Pirrone
    • 1
  • Salvatore La Bua
    • 1
  • Orazio Gambino
    • 1
  1. 1.Universita’ degli Studi di Palermo, DINFO - Dipartimento di Ingegneria Informatica, viale delle Scienze - Edificio 6 - Terzo piano, 90128 Palermo 

Personalised recommendations