Advertisement

An Efficient Threshold Multi-group-Secret Sharing Scheme

  • Hui-Xian Li
  • Liao-Jun Pang
  • Wan-Dong Cai
Part of the Advances in Soft Computing book series (AINSC, volume 40)

Abstract

In this paper, a novel threshold multi-group-secret sharing scheme is proposed based on Chan et al.’s scheme. Multiple groups of secrets are packed into a group of large secrets by using the Chinese Remain Theorem, and then shared by constructing a secret polynomial such that its coefficients are those large secrets. In the proposed scheme, the secret distribution procedure is needed only once to share multiple groups of secrets, which reduces the amount of computation largely. Moreover, each group of secrets has a different threshold access structure and includes a distinct number of secrets. Analysis results show that the proposed scheme needs fewer public values and is higher in efficiency and easier in implementation than existing schemes, especially for sharing many groups of secrets, which makes it more practical in practice.

Keywords

Secret sharing Threshold Multi-group-secret sharing Chinese Remain Theorem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Desmedt, Y.: Some recent research aspects of threshold cryptography. In: Okamoto, R., Davida, G., Mambo, M. (eds.) Information Security, pp. 158–173. Springer, Berlin (1997)Google Scholar
  2. 2.
    Shamir, A.: How to share a secret. Communications of the ACM 22, 612–613 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Blakley, G.: Safeguarding cryptographic key. In: Merwin, R.E., Zanca, J.T., Smith, M. (eds.) Proceedings of AFIPS, pp. 313–317. AFIPS Press, New York (1979)Google Scholar
  4. 4.
    Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Transactions on Information Theory IT-29, 208–210 (1983)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Crescenzo, G.D.: Sharing one secret vs. sharing many secrets. Theoret. Comput. Sci. 295, 123–140 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Harn, L.: Efficient sharing (broadcasting) of multiple secrets. IEE Proceedings-—Computers and Digital Techniques 142, 237–240 (1995)CrossRefGoogle Scholar
  7. 7.
    Chien, H.Y., Jan, J.K., Tseng, Y.M.: A practical (t, n) multi-secret sharing scheme. IEICE Transactions on Fundamentals E83-A, 2762-2765 (2000)Google Scholar
  8. 8.
    Li, H.X., Cheng, C.T., Pang, L.J.: A new (t, n)-threshold multi-secret sharing scheme. In: Hao, Y., Liu, J., Wang, Y., et al. (eds.) Computational Intelligence and Security, pp. 421–426. Springer, Berlin (2005)CrossRefGoogle Scholar
  9. 9.
    Pang, L.J., Wang, Y.M.: A new (t, n) multi-secret sharing scheme based on Shamir’s secret sharing. Appl. Math. & Compt 167, 840–848 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Chan, C.W., Chang, C.C.: A scheme for threshold multi-secret sharing. Appl. Math. & Compt 166, 1–14 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    El Gamal, T.: A public-key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. on Info. Theory IT-31, 469–472 (1985)Google Scholar
  12. 12.
    Nathanson, M.B.: Elementary methods in number theory. Springer, New York (2000)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Hui-Xian Li
    • 1
  • Liao-Jun Pang
    • 2
  • Wan-Dong Cai
    • 1
  1. 1.Dept of Comp Sci. and Eng., Northwestern Polytechnical Univ., Xi’an,710072China
  2. 2.The Ministry of Edu. Key Lab. of Computer Networks and Information Security Xidian Univ., Xi’an,710071China

Personalised recommendations