Advertisement

A Unified Feature Extraction Architecture

  • Tino Weinkauf
  • Jan Sahner
  • Holger Theisel
  • Hans-Christian Hege
  • Hans-Peter Seidel
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 95)

Abstract

We present a unified feature extraction architecture consisting of only three core algorithms that allows to extract and track a rich variety of geometrically defined, local and global features evolving in scalar and vector fields. The architecture builds upon the concepts of Feature Flow Fields and Connectors, which can be implemented using the three core algorithms finding zeros, integrating and intersecting stream objects. We apply our methods to extract and track the topology and vortex core lines both in steady and unsteady flow fields.

Keywords

Vortical Structure Stream Line Vortex Breakdown Stream Surface Saddle Connection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D.C. Banks and B.A. Singer. A predictor-corrector technique for visualizing unsteady flow. IEEE Transactions on Visualization and Computer Graphics, 1(2):151–163, 1995.CrossRefGoogle Scholar
  2. [2]
    E. Caraballo, M. Samimy, and DeBonis J. Low dimensional modeling of flow for closedloop flow control. AIAA Paper 2003-0059.Google Scholar
  3. [3]
    W. de Leeuw and R. van Liere. Collapsing flow topology using area metrics. In Proc. IEEE Visualization’ 99, pages 149–354, 1999.Google Scholar
  4. [4]
    C. Garth, X. Tricoche, and G. Scheuermann. Tracking of vector field singularities in unstructured 3D time-dependent datasets. In Proc. IEEE Visualization 2004, pages 329–336, 2004.Google Scholar
  5. [5]
    A. Globus, C. Levit, and T. Lasinski. A tool for visualizing the topology of three-dimensional vector fields. In Proc. IEEE Visualization’ 91, pages 33–40, 1991.Google Scholar
  6. [6]
    J. Helman and L. Hesselink. Representation and display of vector field topology in fluid flow data sets. IEEE Computer, 22(8):27–36, August 1989.Google Scholar
  7. [7]
    J. Hultquist. Constructing stream surfaces in steady 3D vector fields. In Proc. IEEE Visualization’ 92, pages 171–177, 1992.Google Scholar
  8. [8]
    J. Jeong and F. Hussain. On the identification of a vortex. J. Fluid Mechanics, 285:69–94, 1995.zbMATHCrossRefGoogle Scholar
  9. [9]
    S.K. Lodha, J.C. Renteria, and K.M. Roskin. Topology preserving compression of 2D vector fields. In Proc. IEEE Visualization 2000, pages 343–350, 2000.Google Scholar
  10. [10]
    N. Max, B. Becker, and R. Crawfis. Flow volumes for interactive vector field visualization. In Proc. Visualization 93, pages 19–24, 1993.Google Scholar
  11. [11]
    B.R. Noack and H. Eckelmann. A low-dimensional galerkin method for the three-dimensional flow around a circular cylinder. Phys. Fluids, 6:124–143, 1994.zbMATHCrossRefGoogle Scholar
  12. [12]
    R. Peikert and M. Roth. The parallel vectors operator-a vector field visualization primitive. In Proc. IEEE Visualization 99, pages 263–270, 1999.Google Scholar
  13. [13]
    F.H. Post, B. Vrolijk, H. Hauser, R.S. Laramee, and H. Doleisch. Feature extraction and visualisation of flow fields. In Proc. Eurographics 2002, State of the Art Reports, pages 69–100, 2002.Google Scholar
  14. [14]
    M. Roth and R. Peikert. Flow visualization for turbomachinery design. In Proc. Visualization 96, pages 381–384, 1996.Google Scholar
  15. [15]
    M. Roth and R. Peikert. A higher-order method for finding vortex core lines. In D. Ebert, H. Hagen, and H. Rushmeier, editors, Proc. IEEE Visualization’ 98, pages 143–150, Los Alamitos, 1998. IEEE Computer Society Press.Google Scholar
  16. [16]
    G. Scheuermann, H. Krüger, M. Menzel, and A. Rockwood. Visualizing non-linear vector field topology. IEEE Transactions on Visualization and Computer Graphics, 4(2):109–116, 1998.CrossRefGoogle Scholar
  17. [17]
    D. Stalling, M. Westerhoff, and H.-C. Hege. Amira: A highly interactive system for visual data analysis. The Visualization Handbook, pages 749–767, 2005.Google Scholar
  18. [18]
    D. Sujudi and R. Haimes. Identification of swirling flow in 3D vector fields. Technical report, Department of Aeronautics and Astronautics, MIT, 1995. AIAA Paper 95-1715.Google Scholar
  19. [19]
    H. Theisel. Designing 2D vector fields of arbitrary topology. Computer Graphics Forum (Eurographics 2002), 21(3):595–604, 2002.CrossRefGoogle Scholar
  20. [20]
    H. Theisel, J. Sahner, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Extraction of parallel vector surfaces in 3d time-dependent fields and application to vortex core line tracking. In Proc. IEEE Visualization 2005, pages 631–638, 2005.Google Scholar
  21. [21]
    H. Theisel and H.-P. Seidel. Feature flow fields. In Data Visualization 2003. Proc. VisSym 03, pages 141–148, 2003.Google Scholar
  22. [22]
    H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Saddle connectors-an approach to visualizing the topological skeleton of complex 3D vector fields. In Proc. IEEE Visualization 2003, pages 225–232, 2003.Google Scholar
  23. [23]
    H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Grid-independent detection of closed stream lines in 2D vector fields. In Proc. Vision, Modeling and Visualization 2004, 2004.Google Scholar
  24. [24]
    H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Topological methods for 2D time-dependent vector fields based on stream lines and path lines. IEEE Transactions on Visualization and Computer Graphics, 11(4):383–394, 2005.CrossRefGoogle Scholar
  25. [25]
    X. Tricoche, G. Scheuermann, and H. Hagen. Continuous topology simplification of planar vector fields. In Proc. Visualization 01, pages 159–166, 2001.Google Scholar
  26. [26]
    Xavier Tricoche, Christoph Garth, Gordon Kindlmann, Eduard Deines, Gerik Scheuermann, Markus Ruetten, and Charles Hansen. Visualization of intricate flow structures for vortex breakdown analysis. In Proc. IEEE Visualization 2004, pages 187–194, 2004.Google Scholar
  27. [27]
    T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel. Boundary switch connectors for topological visualization of complex 3D vector fields. In Data Visualization 2004. Proc. VisSym 04, pages 183–192, 2004.Google Scholar
  28. [28]
    T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel. Topological construction and visualization of higher order 3D vector fields. Computer Graphics Forum (Eurographics 2004), 23(3):469–478, 2004.CrossRefGoogle Scholar
  29. [29]
    T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel. Feature flow fields in out-of-core settings. In Proc. Topo-In-Vis 2005, Budmerice, Slovakia, 2005.Google Scholar
  30. [30]
    T. Weinkauf, H. Theisel, K. Shi, H.-C. Hege, and H.-P. Seidel. Topological simplification of 3d vector fields by extracting higher order critical points. In Proc. IEEE Visualization 2005, pages 559–566, 2005.Google Scholar
  31. [31]
    R. Westermann, C. Johnson, and T. Ertl. Topology-preserving smoothing of vector fields. IEEE Transactions on Visualization and Computer Graphics, 7(3):222–229, 2001.CrossRefGoogle Scholar
  32. [32]
    T. Wischgoll and G. Scheuermann. Detection and visualization of closed streamlines in planar flows. IEEE Transactions on Visualization and Computer Graphics, 7(2):165–172, 2001.CrossRefGoogle Scholar
  33. [33]
    H.-Q. Zhang, U. Fey, B.R. Noack, M. König, and H. Eckelmann. On the transition of the cylinder wake. Phys. Fluids, 7(4):779–795, 1995.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Tino Weinkauf
    • 1
  • Jan Sahner
    • 1
  • Holger Theisel
    • 2
  • Hans-Christian Hege
    • 1
  • Hans-Peter Seidel
    • 2
  1. 1.Zuse Institute BerlinBerlinGermany
  2. 2.MPI Informatik SaarbrückenSaarbrückenGermany

Personalised recommendations