Flow Control on the Basis of a Featflow-Matlab Coupling

  • Lars Henning
  • Dmitri Kuzmin
  • Volker Mehrmann
  • Michael Schmidt
  • Andriy Sokolov
  • Stefan Turek
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 95)


For the model-based active control of three-dimensional flows at high Reynolds numbers in real time, low-dimensional models of the flow dynamics and efficient actuator and sensor concepts are required. Numerous successful approaches to derive such models have been proposed in the literature.

We propose a software environment for a comfortable and performant testing of control, actuator and sensor concepts which may be based on such models. It is realized by providing an easily manageable Matlab control interface for the κ-ε-model from the Featflow CFD package. Potentials and limitations of this tool are discussed by considering exemplarily the control of the recirculation bubble behind a backward facing step.


Wall Shear Stress Shear Layer Large Eddy Simulation High Reynolds Number Recirculation Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Turek et al.: “FEATFLOW. Finite element software for the incompressible Navier-Stokes equations: User Manual, Release 1.2”, 1999. ( Scholar
  2. [2]
    The MathWorks, Inc., Cochituate Place, 24 Prime ParkWay, Natick, Mass, 01760. Matlab Version (R14), 2005.Google Scholar
  3. [3]
    P. Benner, V. Mehrmann, V. Sima, S. Van Huffel und A. Varga, “SLICOT-A Subroutine Library in Systems and Control Theory”, Applied and Computational Control, Signals and Circuits. 1, 1999, pp. 499–532.Google Scholar
  4. [4]
    M. Griebel, T. Dornseifer, T. Neunhoeffer: “Numerical Simulation in Fluid Dynamics: A Practical Introduction”. SIAM Monographs on Mathematical Modeling and Computation, 1998.Google Scholar
  5. [5]
    D. Kuzmin, S. Turek: “Numerical simulation of turbulent bubbly flows”. 3rd International Symposium on Two-Phase Flow Modelling and Experimentation 2004. Editors: G.P. Celata, P.Di Marco, A. Mariani, R.K. Shah. Pisa, 2004.Google Scholar
  6. [6]
    G. Medić, B. Mohammadi: “NSIKE-an incompressible Navier-Stokes solver for unstructured meshes”. INRIA Research Report No 3644, 1999.Google Scholar
  7. [7]
    S. Turek: “Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approach”. LNCSE 6, Springer, 1999.Google Scholar
  8. [8]
    D. Kuzmin, R. Löhner and S. Turek (Eds.), “Flux-Corrected Transport”. Springer, 2005.Google Scholar
  9. [9]
    R. Becker, M. Garwon, C. Gutknecht, G. Bärwolff, R. King: “Robust control of separated shear flows in simulation and experiment”. Journal of Process Control 15, 2005, pp. 691–700.CrossRefGoogle Scholar
  10. [10]
    M. Schmidt, A. Sokolov: “A Featflow-Matlab-Coupling for Flow Control: User Manual”, 2006. ( Scholar
  11. [11]
    B.F. Armaly, F. Durst, J.C.F. Pereira, B. Schonung: “Experimental and theoretical investigation of backward-facing step flow”. J. Fluid Mech. 127, 1983, pp. 473–496.CrossRefGoogle Scholar
  12. [12]
    K. Gartling: “A Test Problem For Outflow Boundary Conditions-Flow Over a Backward Facing Step”. International Journal for Numerical Methods in Fluids 11, 1990, pp. 953–967.CrossRefGoogle Scholar
  13. [13]
    J. Kim, P. Moin: “Application of a Fractional-StepMethod to Incompressible Navier-Stokes Equation”. Journal of Computational Physics, 59, 1985 pp. 308–314.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    H. Le, P. Moin, J. Kim: “Direct numerical simulation of turbulent flow over a backwardfacing step”. J. Fluid Mech. 330, 1997, pp. 349–374.zbMATHCrossRefGoogle Scholar
  15. [15]
    L. Kaiktsis, G. E. Karniadakis, S. A. Orszag: “Onset of Three-Dimensionality, Equilibria, and Early Transition in Flow over a Backward facing Step”. Journal of Fluid Mechanics, 231, 1991, pp. 501–528.zbMATHCrossRefGoogle Scholar
  16. [16]
    T. Weinkauf, H.-C. Hege, B.R. Noack, M. Schlegel, A. Dillmann: “Coherent Structures in a Transitional Flow around a Backward-Facing Step”. Physics of Fluids, 15(9), 2003.Google Scholar
  17. [17]
    M. Garwon, R. King: “A multivariable adaptive control strategy to regulate the separated flow behind a backward-facing step”. 16th IFAC World Congress, Prague, Czech Republic, July 2005.Google Scholar
  18. [18]
    L. Henning, R. King: “Multivariable closed-loop control of the reattachement length downstream of a backward-facing step”. 16th IFACWorld Congress, Praha, Czech Republic, July 2005.Google Scholar
  19. [19]
    J. Gerhard, M. Pastoor, R. King, B.R. Noack, A. Dillmann, M. Morzynski and G. Tadmor: “Model-based control of vortex shedding using low-dimensional Galerkin models”. AIAA-Paper 2003-4262, 2003.Google Scholar
  20. [20]
    O. Lehmann, D.M. Luchtenburg, B.R. Noack, R. King, M. Morzynski, G. Tadmor: “Wake stabilization using POD Galerkin models with interpolated modes”, Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference ECC 2005, Invited Paper 1618, 2005.Google Scholar
  21. [21]
    M. Pastoor, R. King, B.R. Noack, A. Dillmann and G. Tadmor: “Model-based coherentstructure control of turbulent shear ows using low-dimensional vortex models”. AIAA-Paper 2003-4261, 2003.Google Scholar
  22. [22]
    M. Hinze: “Optimal and instantaneous control of the instationary Navier-Stokes equations”. Habilitation thesis, Fachbereich Mathematik, Technische Universität Berlin, 2000.Google Scholar
  23. [23]
    R. Glowinski: “Finite element methods for the numerical simulation of incompressible viscous flow; Introduction to the Control of the Navier-Stokes Equations”. Lectures in Applied Mathematics, 28, 1991.Google Scholar
  24. [24]
    M. D. Gunzburger, S. Manservisi: “The velocity tracking problem for Navier-Stokes flows with boundary controls”. Siam J. Control and Optimization, 39, 2000, pp. 594–634.zbMATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    M. Hinze, K. Kunisch: “Control strategies for fluid flows-optimal versus suboptimal control”. In H.G. Bock et al., editor, ENUMATH 97, 1997, pp. 351–358.Google Scholar
  26. [26]
    M. Hinze, K. Kunisch: “Suboptimal Control Strategies for Backward Facing Step Flows”. Proceedings of the 15th IMACSWorld Congress on Scientific Computation, Modelling and Applied Mathematics, Editor A. Sydow, Vol. 3, 1997, pp. 53–58.Google Scholar
  27. [27]
    H. Choi, M. Hinze, K. Kunisch: “Instantaneous control of backward-facing step flows”. Appl. Numer. Math. 31, 1999, pp. 133–158.zbMATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    T. R. Bewley, P. Moin, R. Temam: “DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms”. J. Fluid Mech., 447, 2001, pp. 179–225.zbMATHMathSciNetGoogle Scholar
  29. [29]
    K. Afanasiev, M. Hinze: “Adaptive control of a wake flow using proper orthogonal decomposition”. In Shape Optimization & Optimal Design, Lecture Notes in Pure and Applied Mathematics 216. Marcel Dekker, 2001.Google Scholar
  30. [30]
    M. Hinze, K. Kunisch: “On suboptimal Control Strategies for the Navier-Stokes Equations”. ESAIM: Proceedings 4, 1998, pp. 181–198.zbMATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    K. Ito, S. S. Ravindran: “Reduced basis method for optimal control of unsteady viscous flow”. Int. J. Comput. Fluid Dyn., 15, 2001, pp. 97–113.zbMATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    S. S. Ravindran: “Control of flow separation over a forward-facing step by model reduction.” Comput. Methods Appl. Mech. Engrg. 191, 2002, pp. 4599–4617.zbMATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    B. Mohammadi, O. Pironneau: “Analysis of the k-epsilon turbulence model”. Wiley, 1994.Google Scholar
  34. [34]
    L. Ljung: “System identification-Theory for the user.” Prentice Hall PTR, 1999.Google Scholar
  35. [35]
    S. Skogestad, I. Postlethwaite: “Multivariable feedback control-Analysis and design”. 2 edn. John Wiley & Sons, Ltd, 2005.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Lars Henning
    • 1
  • Dmitri Kuzmin
    • 3
  • Volker Mehrmann
    • 2
  • Michael Schmidt
    • 2
  • Andriy Sokolov
    • 3
  • Stefan Turek
    • 3
  1. 1.Fachgebiet Mess- und RegelungstechnikTechnische Universität BerlinBerlinGermany
  2. 2.Fachgebiet Numerische MathematikTechnische Universität BerlinBerlinGermany
  3. 3.Fachbereich MathematikUniversität DortmundDortmundGermany

Personalised recommendations