Electromagnetic Control of Separated Flows Using Periodic Excitation with Different Wave Forms

  • Christian Cierpka
  • Tom Weier
  • Gunter Gerbeth
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 95)


Time periodic Lorentz forces have been used to influence the separated flow on an inclined flat plate in deep stall at a Reynolds number of 104. The influence of the control parameters effective momentum coefficient and excitation frequency as well as excitation wave form is discussed based on phase averaged PIV measurements. As expected, control authority depends strongly on momentum input and excitation frequency, but effects of the excitation wave form can be shown as well.


Particle Image Velocimetry Shear Layer Lorentz Force Excitation Frequency Wave Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Gad-el Hak, M.: Flow control: passive, active, and reactive flow management. Cambridge University Press (2000)Google Scholar
  2. [2]
    Wygnanski, I.: Boundary layer and flow control by periodic addition of momentum. AIAA-paper 97-2117 (1997)Google Scholar
  3. [3]
    Greenblatt, D., Wygnanski, I.: The control of flow separation by periodic excitation. Prog. Aero. Sci. 36 (2000) 487–545CrossRefGoogle Scholar
  4. [4]
    Seifert, A., Greenblatt, D., Wygnanski, I.: Active separation control: an overview of Reynolds and Mach number effects. Aerosp. Sci. Techn. 8 (2004) 569–582CrossRefGoogle Scholar
  5. [5]
    Sutton, G., Sherman, A.: Engineering Magnetohydrodynamics. McGraw Hill, New York (1965)Google Scholar
  6. [6]
    Crausse, É., Cachon, P.: Actions électromagnétiques sur les liquides en mouvement, notamment dans la couche limite d’ obstacles immergés. Comptes rendus hebdomadaires des séances de l’ Académie des Sciences 238 (1954) 2488–2490Google Scholar
  7. [7]
    Lielausis, O.: Effect of electromagnetic forces on the flow of liquid metals and electrolytes. PhD thesis, Academy of Sciences of the Latvian SSR, Institute of Physics, Riga (1961) in Russian.Google Scholar
  8. [8]
    Gailitis, A., Lielausis, O.: On a possibility to reduce the hydrodynamic resistance of a plate in an electrolyte. Appl. Magnetohydrodynamics, Rep. Phys. Inst. 12 (1961) 143–146 in Russian.Google Scholar
  9. [9]
    Tsinober, A.B., Shtern, A.G.: On the possibility to increase the stability of the flow in the boundary layer by means of crossed electric and magnetic fields. Magnitnaya Gidrodinamica 3 (1967) 152–154 (in Russian).Google Scholar
  10. [10]
    Meyer, R.: Magnetohydrodynamic method and apparatus. US Patent 3,360,220 (1967)Google Scholar
  11. [11]
    Shtern, A.: Feasibility of modifying the boundary layer by crossed electric and magnetic fields. Magnitnaya Gidrodinamika 6 (1970) 124–128Google Scholar
  12. [12]
    Nosenchuck, D., Brown, G., Culver, H., Eng, T., Huang, I.: Spatial and temporal characteristics of boundary layers controlled with the lorentz force. In: 12th Australian Fluid Mechanics Conference, Sydney (1995)Google Scholar
  13. [13]
    Henoch, C., Stace, J.: Experimental investigation of a salt water turbulent boundary layer modified by an applied streamwise magnetohydrodynamic body force. Phys. Fluids 7 (1995) 1371–1383CrossRefGoogle Scholar
  14. [14]
    Crawford, C.H., Karniadakis, G.E.: Reynolds stress analysis of EMHD-controlled wall turbulence. Part I. Streamwise forcing. Phys. Fluids 9 (1997) 788–806CrossRefGoogle Scholar
  15. [15]
    Berger, T.W., Kim, J., Lee, C., Lim, J.: Turbulent boundary layer control utilizing the lorentz force. Phys. Fluids 12 (2000) 631–649CrossRefGoogle Scholar
  16. [16]
    Du, Y., Symeonidis, V., Karniadakis, G.: Drag reduction in wall-bounded turbulence via a transverse travelling wave. J. Fluid Mech. 457 (2002) 1–34zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    Weier, T., Gerbeth, G., Mutschke, G., Platacis, E., Lielausis, O.: Experiments on cylinder wake stabilization in an electrolyte solution by means of electromagnetic forces localized on the cylinder surface. Experimental Thermal and Fluid Science 16 (1998) 84–91CrossRefGoogle Scholar
  18. [18]
    Kim, S., Lee, C.: Investigation of the flow around a circular cylinder under the influence of an electromagnetic force. Exp. Fluids 28 (2000) 252–260CrossRefGoogle Scholar
  19. [19]
    Posdziech, O., Grundmann, R.: Electromagnetic control of seawater flow around circular cylinders. European Journal of Mechanics-B/Fluids 20 (2001) 255–274zbMATHCrossRefGoogle Scholar
  20. [20]
    Chen, Z., Aubry, N.: Active control of cylinder wake. Communications in Nonlinear Science and Numerical Simulation 10 (2005) 205–216zbMATHCrossRefGoogle Scholar
  21. [21]
    Weier, T., Gerbeth, G., Mutschke, G., Lielausis, O., Lammers, G.: Control of flow separation using electromagnetic forces. Flow, Turbulence and Combustion 71 (2003) 5–17zbMATHCrossRefGoogle Scholar
  22. [22]
    Weier, T., Gerbeth, G.: Control of separated flows by time periodic Lorentz forces. Eur. J. Mech. B/Fluids 23 (2004) 835–849zbMATHCrossRefGoogle Scholar
  23. [23]
    Bouras, C., Nagib, H., Durst, F., Heim, U.: Lift and drag control on a lambda wing using leading-edge slot pulsation of various wave forms. Bulletin of the American Physical Society 45 (2000) 30Google Scholar
  24. [24]
    Wiltse, J., Glezer, A.: Manipulation of free shear flows using piezoelectric actuators. J. Fluid Mech. 249 (1993) 261–285CrossRefGoogle Scholar
  25. [25]
    Margalit, S., Greenblatt, D., Seifert, A., Wygnanski, I.: Active flow control of a delta wing at high incidence using segmented piezoelectric actuators. In: 1st Flow Control Conference, St. Louis, MO (2002) AIAA-paper 2002-3270.Google Scholar
  26. [26]
    Pack, L.G., Scheffler, N.W., Yao, C.S.: Active control of separation from the slat shoulder of a supercritical airfoil. In: 1st Flow Control Conference, St. Louis, MO (2002) AIAA-paper 2002-3156.Google Scholar
  27. [27]
    Washburn, A., Amitay, M.: Active flow control on the stingray UAV: Physical mechanism. In: 42nd Aerospace Sciences Meeting & Exhibit, Reno, NV (2004) AIAA-paper 2004-0745.Google Scholar
  28. [28]
    PackMelton, L.G., Yao, C.S., Seifert, A.: Application of excitation from multiple locations on a simplified high-lift system. In: 2nd Flow Control Conference, Portland, OR (2004) AIAA-paper 2004-2324.Google Scholar
  29. [29]
    Chang, R., Hsiao, F.B., Shyu, R.N.: Forcing level effects of internal acoustic excitation on the improvement of airfoil performance. J. Aircraft 29 (1992) 823–829CrossRefGoogle Scholar
  30. [30]
    Wu, J.Z., Lu, X.Y., Denny, A., Fan, M., Wu, J.M.: Post-stall flow control on an airfoil by local unsteady forcing. J. Fluid Mech. 371 (1998) 21–58zbMATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    Kiedaisch, J., Demanett, B., Nagib, H.: Active flow control of large separation: A new look at scaling parameters. In: 58th Annual Meeting of the APS Division of Fluid Dynamics. (2005)Google Scholar
  32. [32]
    Rice, W.: Propulsion system. US Patent 2,997,013 (1961)Google Scholar
  33. [33]
    Grienberg, E.: On determination of properties of some potential fields. Applied Magnetohydrodynamics. Reports of the Physics Institute 12 (1961) 147–154 (in Russian).Google Scholar
  34. [34]
    Weier, T., Fey, U., Gerbeth, G., Mutschke, G., Lielausis, O., Platacis, E.: Boundary layer control bymeans of wall parallel Lorentz forces. Magnetohydrodynamics 37 (2001) 177–186Google Scholar
  35. [35]
    Weier, T., Gerbeth, G., Fey, U., Mutschke, G., Posdziech, O., Platacis, E., Lielausis, O.: Some results on electromagnetic control of flow around bodies. In: Int. Symp. on Seawater Drag Reduction. (1998) 229–235Google Scholar
  36. [36]
    Amitay, M., Glezer, A.: Role of actuation frequency in controlled flow reattachement over a stalled airfoil. AIAA J. 40 (2002) 209–216Google Scholar
  37. [37]
    Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285 (1995) 69–94zbMATHCrossRefMathSciNetGoogle Scholar
  38. [38]
    Schmitz, F.: Aerodynamik des Flugmodells. Tragflügelmessungen I. C.J.E. Volckmann Nachf. E. Wette, Berlin-Charlottenburg (1942)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Christian Cierpka
    • 1
  • Tom Weier
    • 1
  • Gunter Gerbeth
    • 1
  1. 1.Forschungszentrum RossendorfDresdenGermany

Personalised recommendations