Model-Checking One-Clock Priced Timed Automata

  • Patricia Bouyer
  • Kim G. Larsen
  • Nicolas Markey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4423)

Abstract

We consider the model of priced (a.k.a. weighted) timed automata, an extension of timed automata with cost information on both locations and transitions. We prove that model-checking this class of models against the logic WCTL, CTL with cost-constrained modalities, is PSPACE-complete under the “single-clock” assumption. In contrast, it has been recently proved that the model-checking problem is undecidable for this model as soon as the system has three clocks. We also prove that the model-checking of WCTL* becomes undecidable, even under this “single-clock” assumption.

References

  1. 1.
    Abdeddaïm, Y., Asarin, E., Maler, O.: Scheduling with timed automata. Theor. Comp. Science 354(2), 272–300 (2006)CrossRefMATHGoogle Scholar
  2. 2.
    Alur, R., Bernadsky, M., Madhusudan, P.: Optimal reachability in weighted timed games. In: Díaz, J., et al. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 122–133. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 49–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Behrmann, G., et al.: Minimum-cost reachability for priced timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 147–161. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Bouyer, P., Brihaye, T., Markey, N.: Improved undecidability results on weighted timed automata. Inf. Proc. Letters 98(5), 188–194 (2006)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Bouyer, P., Brinksma, E., Larsen, K.G.: Staying alive as cheaply as possible. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 203–218. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Bouyer, P., Brinksma, E., Larsen, K.G.: Optimal infinite scheduling for multi-priced timed automata. Form. Meth. In: Syst. Design, To appear (2006)Google Scholar
  8. 8.
    Bouyer, P., et al.: Optimal strategies in priced timed game automata. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 148–160. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Bouyer, P., et al.: Almost optimal strategies in one-clock priced timed automata. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 346–357. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Brihaye, T., Bruyère, V., Raskin, J.-F.: Model-checking for weighted timed automata. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 277–292. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Brihaye, T., Bruyère, V., Raskin, J.-F.: On optimal timed strategies. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 49–64. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Emerson, E.A., Halpern, J.Y.: “Sometimes” and ”not never” revisited: On branching versus linear time temporal logic. J. ACM 33(1), 151–178 (1986)MATHMathSciNetGoogle Scholar
  13. 13.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6(5), 512–535 (1994)CrossRefMATHGoogle Scholar
  14. 14.
    Henzinger, T.A., Kupferman, O., Vardi, M.Y.: A space-efficient on-the-fly algorithm for real-time model checking. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 514–529. Springer, Heidelberg (1996)Google Scholar
  15. 15.
    Laroussinie, F., Markey, N., Schnoebelen, P.: Model checking timed automata with one or two clocks. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 387–401. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Laroussinie, F., Markey, N., Schnoebelen, P.: Efficient timed model checking for discrete-time systems. Theor. Comp. Science 353(1-3), 249–271 (2006)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Larsen, K.G., Rassmussen, J.I.: Optimal conditional reachability for multi-priced timed automata. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 234–249. Springer, Heidelberg (2005)Google Scholar
  18. 18.
    Rasmussen, J.I., Larsen, K.G., Subramani, K.: Resource-optimal scheduling using priced timed automata. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 220–235. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Patricia Bouyer
    • 1
  • Kim G. Larsen
    • 2
  • Nicolas Markey
    • 1
  1. 1.LSV, CNRS & ENS de CachanFrance
  2. 2.Aalborg UniversityDenmark

Personalised recommendations