A Distribution Law for CCS and a New Congruence Result for the π-Calculus

  • Daniel Hirschkoff
  • Damien Pous
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4423)

Abstract

We give an axiomatisation of strong bisimilarity on a small fragment of CCS that does not feature the sum operator. This axiomatisation is then used to derive congruence of strong bisimilarity in the finite π-calculus in absence of sum. To our knowledge, this is the only nontrivial subcalculus of the π-calculus that includes the full output prefix and for which strong bisimilarity is a congruence.

References

  1. 1.
    Aceto, L., et al.: Finite Equational Bases in Process Algebra: Results and Open Questions. In: Middeldorp, A., et al. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity. LNCS, vol. 3838, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Boreale, M., Sangiorgi, D.: Some Congruence Properties for π-calculus Bisimilarities. TCS 198, 159–176 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Burkart, O., et al.: Verification over Infinite States. In: Handbook of Process Algebra, pp. 545–623. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  4. 4.
    Castellani, I.: Process Algebras with Localities. In: Handbook of Process Algebra, pp. 945–1045. North-Holland, Amsterdam (2001)CrossRefGoogle Scholar
  5. 5.
    Corradini, F., Gorrieri, R., Marchignoli, D.: Towards parallelization of concurrent systems. Informatique Théorique et Applications 32(4-6), 99–125 (1998)MathSciNetGoogle Scholar
  6. 6.
    Fokkink, W., Luttik, B.: An ω-complete Equational Specification of Interleaving. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 729–743. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Hirshfeld, Y., Jerrum, M.: Bisimulation Equivalence is Decidable for Normed Process Algebra. Technical Report ECS-LFCS-98-386, LFCS (1998)Google Scholar
  8. 8.
    Hirshfeld, Y., Jerrum, M.: Bisimulation Equivalence is Decidable for Normed Process Algebra. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 412–421. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Luttik, B.: What is Algebraic in Process Theory? Concurrency Column, Bulletin of the EATCS 88 (2006)Google Scholar
  10. 10.
    Milner, R., Moller, F.: Unique Decomposition of Processes. TCS 107(2), 357–363 (1993)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Moller, F.: Axioms for Concurrency. PhD thesis, University of Edinburgh (1988)Google Scholar
  12. 12.
    Sangiorgi, D.: A Theory of Bisimulation for the π-Calculus. Acta Informatica 33(1), 69–97 (1996)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. Cambridge University Press, Cambridge (2001)Google Scholar
  14. 14.
    B. Victor, F. Moller, M. Dam, and L.-H. Eriksson. The Mobility Workbench (2006), available from http://www.it.uu.se/research/group/mobility/mwb

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Daniel Hirschkoff
    • 1
  • Damien Pous
    • 1
  1. 1.LIP – ENS Lyon, CNRS, INRIA, UCBLFrance

Personalised recommendations