Advertisement

A Distribution Law for CCS and a New Congruence Result for the π-Calculus

  • Daniel Hirschkoff
  • Damien Pous
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4423)

Abstract

We give an axiomatisation of strong bisimilarity on a small fragment of CCS that does not feature the sum operator. This axiomatisation is then used to derive congruence of strong bisimilarity in the finite π-calculus in absence of sum. To our knowledge, this is the only nontrivial subcalculus of the π-calculus that includes the full output prefix and for which strong bisimilarity is a congruence.

Keywords

Normal Form Parallel Composition Label Transition System Prime Decomposition Unique Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aceto, L., et al.: Finite Equational Bases in Process Algebra: Results and Open Questions. In: Middeldorp, A., et al. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity. LNCS, vol. 3838, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Boreale, M., Sangiorgi, D.: Some Congruence Properties for π-calculus Bisimilarities. TCS 198, 159–176 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Burkart, O., et al.: Verification over Infinite States. In: Handbook of Process Algebra, pp. 545–623. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  4. 4.
    Castellani, I.: Process Algebras with Localities. In: Handbook of Process Algebra, pp. 945–1045. North-Holland, Amsterdam (2001)CrossRefGoogle Scholar
  5. 5.
    Corradini, F., Gorrieri, R., Marchignoli, D.: Towards parallelization of concurrent systems. Informatique Théorique et Applications 32(4-6), 99–125 (1998)MathSciNetGoogle Scholar
  6. 6.
    Fokkink, W., Luttik, B.: An ω-complete Equational Specification of Interleaving. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 729–743. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Hirshfeld, Y., Jerrum, M.: Bisimulation Equivalence is Decidable for Normed Process Algebra. Technical Report ECS-LFCS-98-386, LFCS (1998)Google Scholar
  8. 8.
    Hirshfeld, Y., Jerrum, M.: Bisimulation Equivalence is Decidable for Normed Process Algebra. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 412–421. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Luttik, B.: What is Algebraic in Process Theory? Concurrency Column, Bulletin of the EATCS 88 (2006)Google Scholar
  10. 10.
    Milner, R., Moller, F.: Unique Decomposition of Processes. TCS 107(2), 357–363 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Moller, F.: Axioms for Concurrency. PhD thesis, University of Edinburgh (1988)Google Scholar
  12. 12.
    Sangiorgi, D.: A Theory of Bisimulation for the π-Calculus. Acta Informatica 33(1), 69–97 (1996)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. Cambridge University Press, Cambridge (2001)Google Scholar
  14. 14.
    B. Victor, F. Moller, M. Dam, and L.-H. Eriksson. The Mobility Workbench (2006), available from http://www.it.uu.se/research/group/mobility/mwb

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Daniel Hirschkoff
    • 1
  • Damien Pous
    • 1
  1. 1.LIP – ENS Lyon, CNRS, INRIA, UCBLFrance

Personalised recommendations