Symbolic Backwards-Reachability Analysis for Higher-Order Pushdown Systems

  • Matthew Hague
  • C. -H. Luke Ong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4423)

Abstract

Higher-order pushdown systems (PDSs) generalise pushdown systems through the use of higher-order stacks, that is, a nested “stack of stacks” structure. We further generalise higher-order PDSs to higher-order Alternating PDSs (APDSs) and consider the backwards reachability problem over these systems. We prove that given an order-n APDS, the set of configurations from which a given regular set of configurations is reachable is itself regular and computable in n-EXPTIME. We show that the result has several useful applications in the verification of higher-order PDSs such as LTL model checking, alternation-free μ-calculus model checking, and the computation of winning regions of reachability games.

Keywords

Model Check Transition Relation Linear Temporal Logic Disjunctive Normal Form Reachability Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bouajjani, A., Meyer, A.: Symbolic Reachability Analysis of Higher-Order Context-Free Processes. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Walukiewicz, I., Bouquet, A.-J., Serre, O.: Pushdown Games with Unboundedness and Regular Conditions. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 88–99. Springer, Heidelberg (2003)Google Scholar
  4. 4.
    Carayol, A.: Regular Sets of Higher-Order Pushdown Stacks. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 168–179. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Carayol, A., Wöhrle, S.: The caucal hierarchy of infinite graphs in terms of logic and higher-order pushdown automata. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 112–123. Springer, Heidelberg (2003)Google Scholar
  6. 6.
    Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Engelfriet, J.: Iterated push-down automata and complexity classes. In: Proc. STOC, pp. 365–373 (1983)Google Scholar
  8. 8.
    Hague, M., et al.: Collapsible pushdown automata and recursion schemes. Preprint, 13 pages (2006)Google Scholar
  9. 9.
    Löding, C., Madhusudan, P., Serre, O.: Visibly pushdown games. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 408–420. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Caucal, D.: On infinite terms having a decidable monadic theory. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 165–176. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Muller, D.E., Schupp, P.E.: The theory of ends, pushdown automata, and second-order logic. Theor. Comput. Sci. 37, 51–75 (1985)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gimbert, H.: Parity and exploration games on infinite graphs. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 56–70. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Hague, M., Ong, C.-H.L.: Symbolic backwards-reachability analysis for higher-order pushdown systems. Preprint, 54 pages (2006), http://www.comlab.ox.ac.uk/oucl/work/matthew.hague/FoSSaCS07-long.pdf
  14. 14.
    Walukiewicz, I.: Pushdown processes: Games and model checking. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 62–74. Springer, Heidelberg (1996)Google Scholar
  15. 15.
    Brzozowski, J.A., Leiss, E.L.: On equations for regular languages, finite automata, and sequential networks. Theor. Comput. Sci. 10, 19–35 (1980)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ong, C.-H.L., Aehlig, K., de Miranda, J.G.: Safety Is not a Restriction at Level 2 for String Languages. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 490–504. Springer, Heidelberg (2005)Google Scholar
  17. 17.
    Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Banff Higher Order Workshop, pp. 238–266 (1995)Google Scholar
  18. 18.
    Maslov, A.N.: Multilevel stack automata. Problems of Information Transmission 15, 1170–1174 (1976)Google Scholar
  19. 19.
    Serre, O.: Note on winning positions on pushdown games with ω-regular conditions. Information Processing Letters 85, 285–291 (2003)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Serre, O.: Games with winning conditions of high Borel complexity. In: Díaz, J., et al. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1150–1162. Springer, Heidelberg (2004)Google Scholar
  21. 21.
    Ong, C.-H.L.: On model-checking trees generated by higher-order recursion schemes. In: Proc. LICS ’06, pp. 81–90. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  22. 22.
    Cachat, T.: Games on Pushdown Graphs and Extensions. PhD thesis, RWTH Aachen (2003)Google Scholar
  23. 23.
    Cachat, T., Duparc, J., Thomas, W.: Solving pushdown games with a Σ 3 winning condition. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp. 322–336. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Knapik, T., Niwiński, D., Urzyczyn, P.: Higher-Order Pushdown Trees Are Easy. In: Nielsen, M., Engberg, U. (eds.) ETAPS 2002 and FOSSACS 2002. LNCS, vol. 2303, pp. 205–222. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Knapik, T., et al.: Unsafe grammars and panic automata. In: Caires, L., et al. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1450–1461. Springer, Heidelberg (2005)Google Scholar
  26. 26.
    Vardi, M.Y.: A temporal fixpoint calculus. In: Proc. POPL ’88, pp. 250–259. ACM Press, New York (1988)Google Scholar
  27. 27.
    Thomas, W.: Automata on infinite objects. In: Handbook of theoretical computer science (vol. B): formal models and semantics, pp. 133–191 (1990)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Matthew Hague
    • 1
  • C. -H. Luke Ong
    • 1
  1. 1.Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford, OX1 3QDUK

Personalised recommendations