Symbolic Backwards-Reachability Analysis for Higher-Order Pushdown Systems

  • Matthew Hague
  • C. -H. Luke Ong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4423)

Abstract

Higher-order pushdown systems (PDSs) generalise pushdown systems through the use of higher-order stacks, that is, a nested “stack of stacks” structure. We further generalise higher-order PDSs to higher-order Alternating PDSs (APDSs) and consider the backwards reachability problem over these systems. We prove that given an order-n APDS, the set of configurations from which a given regular set of configurations is reachable is itself regular and computable in n-EXPTIME. We show that the result has several useful applications in the verification of higher-order PDSs such as LTL model checking, alternation-free μ-calculus model checking, and the computation of winning regions of reachability games.

References

  1. 1.
    Bouajjani, A., Meyer, A.: Symbolic Reachability Analysis of Higher-Order Context-Free Processes. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Walukiewicz, I., Bouquet, A.-J., Serre, O.: Pushdown Games with Unboundedness and Regular Conditions. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 88–99. Springer, Heidelberg (2003)Google Scholar
  4. 4.
    Carayol, A.: Regular Sets of Higher-Order Pushdown Stacks. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 168–179. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Carayol, A., Wöhrle, S.: The caucal hierarchy of infinite graphs in terms of logic and higher-order pushdown automata. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 112–123. Springer, Heidelberg (2003)Google Scholar
  6. 6.
    Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Engelfriet, J.: Iterated push-down automata and complexity classes. In: Proc. STOC, pp. 365–373 (1983)Google Scholar
  8. 8.
    Hague, M., et al.: Collapsible pushdown automata and recursion schemes. Preprint, 13 pages (2006)Google Scholar
  9. 9.
    Löding, C., Madhusudan, P., Serre, O.: Visibly pushdown games. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 408–420. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Caucal, D.: On infinite terms having a decidable monadic theory. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 165–176. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Muller, D.E., Schupp, P.E.: The theory of ends, pushdown automata, and second-order logic. Theor. Comput. Sci. 37, 51–75 (1985)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gimbert, H.: Parity and exploration games on infinite graphs. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 56–70. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Hague, M., Ong, C.-H.L.: Symbolic backwards-reachability analysis for higher-order pushdown systems. Preprint, 54 pages (2006), http://www.comlab.ox.ac.uk/oucl/work/matthew.hague/FoSSaCS07-long.pdf
  14. 14.
    Walukiewicz, I.: Pushdown processes: Games and model checking. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 62–74. Springer, Heidelberg (1996)Google Scholar
  15. 15.
    Brzozowski, J.A., Leiss, E.L.: On equations for regular languages, finite automata, and sequential networks. Theor. Comput. Sci. 10, 19–35 (1980)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ong, C.-H.L., Aehlig, K., de Miranda, J.G.: Safety Is not a Restriction at Level 2 for String Languages. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 490–504. Springer, Heidelberg (2005)Google Scholar
  17. 17.
    Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Banff Higher Order Workshop, pp. 238–266 (1995)Google Scholar
  18. 18.
    Maslov, A.N.: Multilevel stack automata. Problems of Information Transmission 15, 1170–1174 (1976)Google Scholar
  19. 19.
    Serre, O.: Note on winning positions on pushdown games with ω-regular conditions. Information Processing Letters 85, 285–291 (2003)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Serre, O.: Games with winning conditions of high Borel complexity. In: Díaz, J., et al. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1150–1162. Springer, Heidelberg (2004)Google Scholar
  21. 21.
    Ong, C.-H.L.: On model-checking trees generated by higher-order recursion schemes. In: Proc. LICS ’06, pp. 81–90. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  22. 22.
    Cachat, T.: Games on Pushdown Graphs and Extensions. PhD thesis, RWTH Aachen (2003)Google Scholar
  23. 23.
    Cachat, T., Duparc, J., Thomas, W.: Solving pushdown games with a Σ 3 winning condition. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp. 322–336. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Knapik, T., Niwiński, D., Urzyczyn, P.: Higher-Order Pushdown Trees Are Easy. In: Nielsen, M., Engberg, U. (eds.) ETAPS 2002 and FOSSACS 2002. LNCS, vol. 2303, pp. 205–222. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Knapik, T., et al.: Unsafe grammars and panic automata. In: Caires, L., et al. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1450–1461. Springer, Heidelberg (2005)Google Scholar
  26. 26.
    Vardi, M.Y.: A temporal fixpoint calculus. In: Proc. POPL ’88, pp. 250–259. ACM Press, New York (1988)Google Scholar
  27. 27.
    Thomas, W.: Automata on infinite objects. In: Handbook of theoretical computer science (vol. B): formal models and semantics, pp. 133–191 (1990)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Matthew Hague
    • 1
  • C. -H. Luke Ong
    • 1
  1. 1.Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford, OX1 3QDUK

Personalised recommendations