Advertisement

Approximating a Behavioural Pseudometric Without Discount for Probabilistic Systems

  • Franck van Breugel
  • Babita Sharma
  • James Worrell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4423)

Abstract

Desharnais, Gupta, Jagadeesan and Panangaden introduced a family of behavioural pseudometrics for probabilistic transition systems. These pseudometrics are a quantitative analogue of probabilistic bisimilarity. Distance zero captures probabilistic bisimilarity. Each pseudometric has a discount factor, a real number in the interval (0, 1]. The smaller the discount factor, the more the future is discounted. If the discount factor is one, then the future is not discounted at all. Desharnais et al. showed that the behavioural distances can be calculated up to any desired degree of accuracy if the discount factor is smaller than one. In this paper, we show that the distances can also be approximated if the future is not discounted. A key ingredient of our algorithm is Tarski’s decision procedure for the first order theory over real closed fields. By exploiting the Kantorovich-Rubinstein duality theorem we can restrict to the existential fragment for which more efficient decision procedures exist.

References

  1. 1.
    Baier, C., Engelen, B., Majster-Cederbaum, M.: Deciding bisimilarity and similarity for probabilistic processes. Journal of Computer and System Sciences 60(1), 187–231 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Basu, S., Pollack, R., Roy, M.-F.: On the combinatorial and algebraic complexity of quantifier elimination. Journal of the ACM 43(6), 1002–1045 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    van Breugel, F.: A behavioural pseudometric for metric labelled transition systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 141–155. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    van Breugel, F., Worrell, J.: A behavioural pseudometric for probabilistic transition systems. Theoretical Computer Science 331(1), 115–142 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    van Breugel, F., Worrell, J.: An algorithm for approximating behavioural pseudometrics for probabilistic transition systems. Theoretical Computer Science 360(1-3), 373–385 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Broucke, M.: Regularity of solutions and homotopic equivalence for hybrid systems. In: Proceedings of the 37th IEEE Conference on Decision and Control, vol. 4, pp. 4283–4288. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  7. 7.
    Brown, C.W.: An overview of QEPCAD B: a tool for real quantifier elimination and formula simplification. Journal of Japan Society for Symbolic and Algebraic Computation 10(1), 13–22 (2003)Google Scholar
  8. 8.
    Caspi, P., Benveniste, A.: Toward an approximation theory for computerised control. In: Sangiovanni-Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491, pp. 294–304. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)Google Scholar
  10. 10.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  11. 11.
    de Alfaro, L.: Quantitative verification and control via the mu-calculus. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 102–126. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future in systems theory. In: Baeten, J.C.M., et al. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1022–1037. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Deng, Y., et al.: Metrics for action-labelled quantitative transition systems. In: Proceedings of 3rd Workshop on Quantitative Aspects of Programming Languages. Electronic Notes in Theoretical Computer Science, vol. 153(2), pp. 79–96. Elsevier, Amsterdam (2005)Google Scholar
  14. 14.
    Desharnais, J., et al.: Metrics for labeled Markov systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 258–273. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Desharnais, J., et al.: The metric analogue of weak bisimulation for probabilistic processes. In: Proceedings of 17th Annual IEEE Symposium on Logic in Computer Science, pp. 413–422. IEEE Computer Society Press, Los Alamitos (2002)CrossRefGoogle Scholar
  16. 16.
    Desharnais, J., et al.: Metrics for labelled Markov processes. Theoretical Computer Science 318(3), 323–354 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Di Pierro, A., Hankin, C., Wiklicky, H.: Quantitative relations and approximate process equivalences. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 508–522. Springer, Heidelberg (2003)Google Scholar
  18. 18.
    Giacalone, A., Jou, C.-C., Smolka, S.A.: Algebraic reasoning for probabilistic concurrent systems. In: Proceedings of the IFIP WG 2.2/2.3 Working Conference on Programming Concepts and Methods, pp. 443–458. North-Holland, Amsterdam (1990)Google Scholar
  19. 19.
    Girard, A., Pappas, G.J.: Approximate bisimulations for nonlinear dynamical systems. In: Proceedings of the 44th IEEE Conference on Decision and Control and the European Control Conference, pp. 684–689. IEEE Computer Society Press, Los Alamitos (2005)CrossRefGoogle Scholar
  20. 20.
    Grinstead, C.M., Snell, J.L.: Introduction to Probability. AMS, New York (1997)zbMATHGoogle Scholar
  21. 21.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficients. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  22. 22.
    Kantorovich, L.: On the transfer of masses (in Russian). Doklady Akademii Nauk 37(2), 227–229 (1942), Translated in Management Science 5, 1–4 (1959)Google Scholar
  23. 23.
    Kantorovich, L.V., Rubinstein, G.S.: On the space of completely additive functions (In Russian). Vestnik Leningradskogo Universiteta 3(2), 52–59 (1958)Google Scholar
  24. 24.
    Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and Computation 94(1), 1–28 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    McIver, A.K., Morgan, C.C.: Results of the quantitative μ-calculus qMμ. ACM Transactions on Computational Logic. To appear.Google Scholar
  26. 26.
    Mitchell, J.C., et al.: A probabilistic polynomial-time process calculus for the analysis of cryptographic protocols. Theoretical Computer Science 353(1-3), 118–164 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  28. 28.
    Sharma, B.: An algorithm to quantify behavioural similarity between probabilistic systems. Master’s thesis, York University, Toronto (2006)Google Scholar
  29. 29.
    Tarski, A.: A decision method for elementary algebra and geometry. University of California Press, Berkeley (1951)zbMATHGoogle Scholar
  30. 30.
    Tarski, A.: A lattice-theoretic fixed point theorem and its applications. Pacific Journal of Mathematics 5(2), 285–309 (1955)zbMATHMathSciNetGoogle Scholar
  31. 31.
    Ying, M.: Bisimulation indexes and their applications. Theoretical Computer Science 275(1-2), 1–68 (2002)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Franck van Breugel
    • 1
  • Babita Sharma
    • 1
  • James Worrell
    • 2
  1. 1.York University, 4700 Keele Street, Toronto, M3J 1P3Canada
  2. 2.Oxford University Computing Laboratory, Parks Road, Oxford, OX1 3QDEngland

Personalised recommendations