Advertisement

DWMiner: A Tool for Mining Frequent Item Sets Efficiently in Data Warehouses

  • Bruno Kinder Almentero
  • Alexandre Gonçalves Evsukoff
  • Marta Mattoso
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4395)

Abstract

This work presents DWMiner, an association rules efficient mining tool to process data directly over a relational DBMS data warehouse. DWMiner executes the Apriori algorithm as SQL queries in parallel, using a database PC Cluster middleware developed for SQL query optimization in OLAP applications. DWMiner combines intra- and inter-query parallelism in order to reduce the total time needed to find frequent item sets directly from a data warehouse. DWMiner was tested using the BMS-Web-View1 database from KDD-Cup 2000 and obtained linear and super-linear speedups.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Imielinsk, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: ACM SIGMOD International Conference on Management of Data, pp. 207–216. ACM Press, New York (1993)Google Scholar
  2. 2.
    Agrawal, R., Mannila, H., Srikant, R., et al.: Fast discovery of association rules. In: Fayyad, U.M., et al. (eds.) Advances in Knowledge Discovery and Data Mining, MIT Press, Cambridge (1996)Google Scholar
  3. 3.
    Agrawal, R., Shafer, J.: Parallel Mining of Association Rules. IEEE Trans. Knowledge and Data Engineering 8, 962–969 (1996)CrossRefGoogle Scholar
  4. 4.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: 20th International Conference on Very Large Databases (VLDB), pp. 487–499 (1994)Google Scholar
  5. 5.
    Akal, F., Böhm, K., Schek, H.J.: OLAP Query Evaluation in a Database Cluster: a Performance Study on Intra-Query Parallelism. In: Manolopoulos, Y., Návrat, P. (eds.) ADBIS 2002. LNCS, vol. 2435, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    C-JDBC, http://c-jdbc.objectweb.org/ Accessed in 2005
  7. 7.
    Houtsma, M., Swami, A.: Set-oriented mining of association rules. In: 11th Conference on Data Engineering, Taipei, Taiwan (1995)Google Scholar
  8. 8.
    Kohavi, R., Brodley, C.E., Frasca, B., et al.: KDD Cup 2000 Organizers’ Report: Peeling the Onion. SIGKDD Exploration 2(2), 86–98 (2000)CrossRefGoogle Scholar
  9. 9.
    Lima, A.A.B., Mattoso, M., Valduriez, P.: OLAP Query Processing in a Database Cluster. In: Danelutto, M., Vanneschi, M., Laforenza, D. (eds.) Euro-Par 2004. LNCS, vol. 3149, pp. 355–362. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Lima, A.A.B., Mattoso, M., Valduriez, P.: Adaptive Virtual Partitioning for OLAP Query Processing in a Database Cluster. In: 19th SBBD, pp. 92–105 (2005)Google Scholar
  11. 11.
    Mattoso, M., et al.: "ParGRES: a middleware for executing OLAP queries in parallel". COPPE/UFRJ Technical Report ES-690 (2005), http://pargres.nacad.ufrj.br/Documentos/ES-690.pdf
  12. 12.
  13. 13.
    ParGRES, http://pargres.nacad.ufrj.br/, Accessed in 2005
  14. 14.
    PostgreSQL, http://www.postgresql.org, Accessed in 2005
  15. 15.
    Röhm, U., Böhm, K., Schek, H.J.: FAS - A Freshness-Sensitive Coordination Middleware for a Cluster of OLAP Components. In: 28th International Conference on Very Large Data Bases (VLDB2002), pp. 754–765 (2002)Google Scholar
  16. 16.
    Sarawagi, S., Thomas, S., Agrawal, R.: Integrating Association Rule Mining with Relational Database Systems: Alternatives and Implications. In: 1998 ACM SIGMOD International Conference on Management of Data, pp. 343–355. ACM Press, New York (1998)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Bruno Kinder Almentero
    • 1
  • Alexandre Gonçalves Evsukoff
    • 1
  • Marta Mattoso
    • 1
  1. 1.COPPE/Federal University of Rio de Janeiro, P.O. Box 68511, 21941-972 Rio de Janeiro RJBrazil

Personalised recommendations