Advertisement

Abstract Interpretation for Worst and Average Case Analysis

  • Alessandra Di Pierro
  • Chris Hankin
  • Herbert Wiklicky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4444)

Abstract

We review Wilhelm’s work on WCET for hard real-time applications and also recent work on analysis of soft-real time systems using probabilistic methods. We then present Probabilistic Abstract Interpretation (PAI) as a quantitative variation of the classical approach; PAI aims to provide close approximations – this should be contrasted to the safe approximations studied in the standard setting. We discuss the relation between PAI and classical Abstract Interpretation as well as average case analysis.

Keywords

Abstract Interpretation Tensor Model Abstract Domain Speculative Thread Average Case Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wilhelm, R.: Timing analysis and timing predictability. In: de Boer, F.S., et al. (eds.) FMCO 2004. LNCS, vol. 3657, pp. 317–323. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Shaw, A.: Reasoning about time in higher-level language software. IEEE Transactions on Software Engineering 15, 875–889 (1989)CrossRefGoogle Scholar
  3. 3.
    Lundquist, T., Stenström, P.: Timing anomalies in dynamically scheduled microprocessors. In: 20th IEEE Real-Time Systems Symposium (1999)Google Scholar
  4. 4.
    Balbo, G.: Introduction to stochastic Petri nets. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and FMPA 2000. LNCS, vol. 2090, pp. 84–155. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Bause, F., Kritzinger, P.S.: Stochastic Petri Nets – An Introduction to the Theory, 2nd edn. Vieweg Verlag, Wiesbaden (2002)zbMATHGoogle Scholar
  6. 6.
    Plateau, B., Atif, K.: Stochastic automata network of modeling parallel systems. IEEE Transactions on Software Engineering 17, 1093–1108 (1991)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Norman, G., et al.: Formal analysis and validation of continuous time Markov chain based system level power management strategies. In: Rosenstiel, W. (ed.) Proc. 7th Annual IEEE International Workshop on High Level Design Validation and Test (HLDVT’02), pp. 45–50. IEEE Computer Society Press, Los Alamitos (2002)CrossRefGoogle Scholar
  8. 8.
    Di Pierro, A., Wiklicky, H.: Concurrent Constraint Programming: Towards Probabilistic Abstract Interpretation. In: Gabbrielli, M., Pfenning, F. (eds.) Proceedings of PPDP’00 – Priciples and Practice of Declarative Programming, Montréal, Canada, ACM SIGPLAN, pp. 127–138. Association of Computing Machinery (2000)Google Scholar
  9. 9.
    Cousot, P., Cousot, R.: Abstract Interpretation and Applications to Logic Programs. Journal of Logic Programming 13, 103–180 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Abramsky, S., Hankin, C. (eds.): Abstract Interpretation of Declarative Languages. Ellis-Horwood, Chichester (1987)Google Scholar
  11. 11.
    Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  12. 12.
    Di Pierro, A., Wiklicky, H.: Measuring the precision of abstract interpretations. In: Lau, K.-K. (ed.) LOPSTR 2000. LNCS, vol. 2042, pp. 147–164. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Monniaux, D.: Abstract interpretation of probabilistic semantics. In: Palsberg, J. (ed.) SAS 2000. LNCS, vol. 1824, Springer, Heidelberg (2000)Google Scholar
  14. 14.
    Monniaux, D.: Abstract interpretation of probabilistic semantics. In: Palsberg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 322–339. Springer, Heidelberg (2000)Google Scholar
  15. 15.
    Eaton, J.: Gnu Octave Manual (2002), http://www.octave.org
  16. 16.
    Cousot, P., Cousot, R.: Systematic Design of Program Analysis Frameworks. In: Symposium on Principles of Programming Languages (POPL), San Antonio, Texas, pp. 269–282 (1979)Google Scholar
  17. 17.
    Deutsch, F.: Bet Approximation in Inner Product Spaces. CMS Books in Mathematics, vol. 7. Springer, New York (2001)Google Scholar
  18. 18.
    Ben-Israel, A., Greville, T.: Generalised Inverses — Theory and Applications, 2nd edn. CMS Books in Mathematics, vol. 15. Springer, New York (2003)Google Scholar
  19. 19.
    Di Pierro, A., Hankin, C., Wiklicky, H.: Probabilistic chemical abstract machine and the expressiveness of linda languages. In: de Boer, F.S., et al. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 388–407. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Di Pierro, A., Hankin, C., Wiklicky, H.: Quantitative static analysis of distributed systems. Journal of Functional Programming 15, 1–47 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Alessandra Di Pierro
    • 1
  • Chris Hankin
    • 2
  • Herbert Wiklicky
    • 2
  1. 1.Dipartimento di Informatica, University of PisaItaly
  2. 2.Department of Computing, Imperial College LondonUK

Personalised recommendations