Extremes of Continuous–Time Processes.

Chapter

Abstract

In this paper we present a review on the extremal behavior of stationary continuous-time processes with emphasis on generalized Ornstein-Uhlenbeck processes. We restrict our attention to heavy-tailed models like heavy-tailed Ornstein-Uhlenbeck processes or continuous-time GARCH processes. The survey includes the tail behavior of the stationary distribution, the tail behavior of the sample maximum and the asymptotic behavior of sample maxima of our models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albin, J. M. P. (2008): On extremes of infinitely divisible Ornstein-Uhlenbeck processes. Preprint, available at http://www.math.chalmers.se/∼palbin/
  2. Albin, J. M. P. (1987): On Extremal Theory for Nondifferentiable Stationary Processes. PhD thesis, Lund University.Google Scholar
  3. Albin, J. M. P. (1990): On extremal theory for stationary processes. Ann. Probab. 18, 92–128.MATHCrossRefMathSciNetGoogle Scholar
  4. Barndorff-Nielsen, O. E. (2001): Superposition of Ornstein-Uhlenbeck type processes. Theory Probab. Appl. 45, 175–194.CrossRefMathSciNetGoogle Scholar
  5. Barndorff-Nielsen, O. E., Nicolata, E. and Shephard, N. (2002): Some recent developments in stochastic volatility modelling. Quantitative Finance 2, 11–23.CrossRefMathSciNetGoogle Scholar
  6. Barndorff-Nielsen, O. E. and Shephard, N. (2001a): Modelling by Lévy processes for financial econometrics. In: Barndorff-Nielsen, O. E., Mikosch, T., and Resnick, S. I. (Eds.): Lévy Processes: Theory and Applications, 283–318. Birkhäuser, Boston.Google Scholar
  7. Barndorff-Nielsen, O. E. and Shephard, N. (2001b): Non-Gaussian OU based models and some of their uses in financial economics. J. Roy. Statist. Soc. Ser. B 63, 167–241.MATHCrossRefMathSciNetGoogle Scholar
  8. Berman, S. M. (1992): Sojourns and Extremes of Stochastic Processes. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove.Google Scholar
  9. Breiman, L. (1965): On some limit theorems similar to the arc-sine law. Theory Probab. Appl. 10, 323–331.CrossRefMathSciNetGoogle Scholar
  10. Brockwell, P. (2008): Lévy driven continuous-time ARMA processes. In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.): Handbook of Financial Time Series, 456–480. Springer, New York.Google Scholar
  11. Carmona, P., Petit, F. and Yor, M. (1997): On the distribution and asymptotic results for exponential Lévy processes. In: Yor, M. (Ed.): Exponential Functionals and Principal Values Related to Brownian Motion, 73-130. Biblioteca de le Revista Matemàtica Iberoamericana.Google Scholar
  12. Carmona, P., Petit, F. and Yor, M. (2001): Exponential functionals of Lévy processes. In: Barndorff-Nielsen, O. E., Mikosch, T., and Resnick, S. (Eds.): Lévy Processes, Theory and Applications, 41–55. Birkhäuser, Boston.Google Scholar
  13. Daley, D. J. and Vere-Jones, D. (2003): An Introduction to the Theory of Point Processes. Vol I: Elementary Theory and Methods, 2nd edition. Springer, New York.Google Scholar
  14. Davis, R. A. and Miksoch, T. (2008): Probabilistic properties of stochastic volatility models. In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.): Handbook of Financial Time Series, 255–267. Springer, New York.Google Scholar
  15. De Haan, L. and Ferreira, A. (2006): Extreme Value Theory: An Introduction. Springer.Google Scholar
  16. Donati-Martin, C., Ghomrasni, R. and Yor, M. (2001): On certain Markov processes attached to exponential functionals of Brownian motion; application to Asian options. Rev. Mat. Iberoamericana 17, 179–193.MATHMathSciNetGoogle Scholar
  17. Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997): Modelling Extremal Events for Insurance and Finance. Springer, Berlin.Google Scholar
  18. Fasen, V. (2005): Extremes of regularly varying mixed moving average processes. Adv. in Appl. Probab. 37, 993–1014.MATHCrossRefMathSciNetGoogle Scholar
  19. Fasen, V. (2008a): Asymptotic results for sample ACF and extremes of integrated generalized Ornstein-Uhlenbeck processes. Preprint, available at http://www.ma.tum.de/stat/
  20. Fasen, V. (2008b): Extremes of mixed MA processes in the class of convolution equivalent distributions. Preprint, available at http://www.ma.tum.de/stat/
  21. Fasen, V. and Klüppelberg, C. (2007): Extremes of supOU processes. In: Benth, F. E., Di Nunno, G., Lindstrom, T., Oksendal, B. and Zhang, T. (Eds.): Stochastic Analysis and Applications: The Abel Symposium 2005, 340-359. Springer.Google Scholar
  22. Fasen, V., Klüppelberg, C. and Lindner, A. (2006): Extremal behavior of stochastic volatility models. In: Shiryaev, A., Grossinho, M. D. R., Oliviera, P. and Esquivel, M. (Eds.): Stochastic Finance, 107–155. Springer, New York.CrossRefGoogle Scholar
  23. Goldie, C. M. (1991): Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1, 126–166.MATHCrossRefMathSciNetGoogle Scholar
  24. Kac, M. (1943): On the average number of real roots of a random algebraic equation. Bull. Amer. Math. Soc. 49, 314–320.MATHCrossRefMathSciNetGoogle Scholar
  25. Kac, M. and Slepian, D. (1959): Large excursions of Gaussian processes. Ann. Math. Statist. 30, 1215–1228.MATHCrossRefMathSciNetGoogle Scholar
  26. Kallenberg, O. (1997): Foundations of Modern Probability. Springer, New York.Google Scholar
  27. Kesten, H. (1973): Random difference equations and renewal theory for products of random matrices. Acta Math. 131, 207–248.MATHCrossRefMathSciNetGoogle Scholar
  28. Klüppelberg, C. (1989): Subexponential distributions and characterizations of related classes. Probab. Theory Relat. Fields 82, 259–269.MATHCrossRefGoogle Scholar
  29. Klüppelberg, C., Lindner, A. and Maller, R. (2004): A continuous time GARCH process driven by a Lévy process: stationarity and second order behaviour. J. Appl. Probab. 41, 601–622.MATHCrossRefMathSciNetGoogle Scholar
  30. Klüppelberg, C., Lindner, A. and Maller, R. (2006): Continuous time volatility modelling: COGARCH versus Ornstein-Uhlenbeck models. In: Kabanov, Y., Lipster, R., and Stoyanov, J. (Eds.): From Stochastic Calculus to Mathematical Finance. The Shiryaev Festschrift, 393–419. Springer, Berlin.CrossRefGoogle Scholar
  31. Klüppelberg, K. and Kostadinova, T. (2008): Integrated insurance risk models with exponential Lévy investment. Insurance Math. Econ. to appear.Google Scholar
  32. Kostadinova, T. (2007): Optimal investment for insurers, when stock prices follows an exponential Lévy process. Insurance Math. Econ. 41, 250–263.MATHCrossRefMathSciNetGoogle Scholar
  33. Leadbetter, M. R., Lindgren, G. and Rootzén, H. (1983): Extremes and Related Properties of Random Sequences and Processes. Springer, New York.Google Scholar
  34. Leadbetter, M. R. and Rootzén, H. (1983):Extreme value theory for continuous parameter stationary processes. Z. Wahrsch. verw. Gebiete 60, 1–20.Google Scholar
  35. Leadbetter, M. R. and Rootzén, H. (1988): Extremal theory for stochastic processes. Ann. Probab. 16, 431–478.MATHCrossRefMathSciNetGoogle Scholar
  36. Leadbetter, M. R. and Spaniolo, G. V. (2004): Reflections on Rice’s formulae for level crossings-history, extensions and use. Aust. N. J. Stat. 46, 173–180.MATHCrossRefMathSciNetGoogle Scholar
  37. Lindgren, G. (1984): Use and structure of Slepian model processes for prediction and detection in crossing and extreme value theory. In: Oliveira, J. T. D. (Ed.): Statistical Extremes and Applications, 261–284. Dordrecht. Reidel.Google Scholar
  38. Lindner, A. (2008): Continuous time approximations to GARCH and stochastic volatility models. In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.): Handbook of Financial Time Series, 481–496. Springer, New York.Google Scholar
  39. Lindner, A. and Maller, R. (2005): Lévy integrals and the stationarity of generalised Ornstein-Uhlenbeck processes. Stoch. Proc. Appl. 115, 1701–1722.MATHCrossRefMathSciNetGoogle Scholar
  40. Maller, R., Müller, G., and Szimayer, A. (2008): Ornstein-Uhlenbeck processes and extensions. In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.): Handbook of Financial Time Series, 420–437. Springer, New York.Google Scholar
  41. Nelson, D. B. (1990): ARCH models as diffusion approximations. J. Econometrics 45, 7–38.MATHCrossRefMathSciNetGoogle Scholar
  42. Pakes, A. G. (2004): Convolution equivalence and infinite divisibility. J. Appl. Probab. 41, 407–424.MATHCrossRefMathSciNetGoogle Scholar
  43. Paulsen, J. (1993): Risk theory in a stochastic economic environment. Stoch. Proc. Appl. 46, 327–361.MATHCrossRefMathSciNetGoogle Scholar
  44. Protter, P. E. (2004): Stochastic Integration and Differential Equations, 2nd edition. Springer, Berlin.Google Scholar
  45. Resnick, S. I. (1987): Extreme Values, Regular Variation, and Point Processes. Springer, New York.Google Scholar
  46. Rice, S. O. (1939): The distribution of the maximum of a random curve. Amer. J. Math. 61, 409–416.CrossRefMathSciNetGoogle Scholar
  47. Rice, S. O. (1944): Mathematical analysis of random noise. Bell. System Techn. J. 23, 282–332.MATHMathSciNetGoogle Scholar
  48. Rice, S. O. (1945): Mathematical analysis of random noise. Bell. System Techn. J. 24, 46–156.MATHMathSciNetGoogle Scholar
  49. Rootzén, H. (1978): Extremes of moving averages of stable processes. Ann. Probab. 6, 847–869.MATHCrossRefMathSciNetGoogle Scholar
  50. Rosiński, J. and Samorodnitsky, G. (1993): Distributions of subadditive functionals of sample paths of infinitely divisible processes. Ann. Probab. 21, 996–1014.MATHCrossRefMathSciNetGoogle Scholar
  51. Sato, K. (1999): Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge.Google Scholar
  52. Schoutens, W. (2003): Lévy Processes in Finance. Wiley, Chichester.Google Scholar
  53. Shephard, N. and Andersen, T.G. (2008): Stochastic volatility: origins and overview. In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.): Handbook of Financial Time Series, 233–254. Springer, New York.Google Scholar
  54. Slepian, D. (1961): First passage time for particular Gaussian processes. Ann. Math. Stat. 32, 610–612.MATHCrossRefMathSciNetGoogle Scholar
  55. Slepian, D. (1962): The one-sided barrier problem for Gaussian noise. Bell System Techn. J. 41, 463–501.MathSciNetGoogle Scholar
  56. Volkonskii, V. A. and Rozanov, Y. A. (1959): Some limit theorems for random functions, I. Theory Probab. Appl. 4, 178–197.CrossRefMathSciNetGoogle Scholar
  57. Volkonskii, V. A. and Rozanov, Y. A. (1961): Some limit theorems for random functions, II. Theory Probab. Appl. 6, 186–198.CrossRefMathSciNetGoogle Scholar
  58. Watanabe, T. (2008): Convolution equivalence and distributions of random sums. Probab. Theory Relat. Fields to appear.Google Scholar
  59. Wolfe, S. J. (1982): On a continuous analogue of the stochastic difference equation x n = ρx n−1 + b n. Stoch. Proc. Appl. 12, 301–312.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Technische Universität MünchenZentrum MathematikGarching

Personalised recommendations