Advertisement

Mining Spatial Gene Expression Data for Association Rules

  • Jano van Hemert
  • Richard Baldock
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4414)

Abstract

We analyse data from the Edinburgh Mouse Atlas Gene-Expression Database (EMAGE) which is a high quality data source for spatio-temporal gene expression patterns. Using a novel process whereby generated patterns are used to probe spatially-mapped gene expression domains, we are able to get unbiased results as opposed to using annotations based predefined anatomy regions. We describe two processes to form association rules based on spatial configurations, one that associates spatial regions, the other associates genes.

Keywords

association rules gene expression patterns in situ hybridization spatio-temporal atlases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Creighton, C., Hanash, S.: Mining gene expression databases for association rules. Bioinformatics 19(1), 79–86 (2003)CrossRefGoogle Scholar
  2. 2.
    Becquet, C., Blachon, S., Jeudy, B., Boulicaut, J.F., Gandrillon, O.: Strong-association-rule mining for large-scale gene-expression data analysis: a case study on human sage data. Genome Biology 3(12) (2002)Google Scholar
  3. 3.
    Tešić, J., Newsam, S., Manjunath, B.S.: Mining image datasets using perceptual association rules. In: Proceedings of SIAM Sixth Workshop on Mining Scientific and Engineering Datasets in conjunction with the Third SIAM International Conference (2003)Google Scholar
  4. 4.
    Rushing, J.A., Ranganath, H.S., Hinke, T.H., Graves, S.J.: Using association rules as texture features. IEEE Transactions on Pattern Analyses and Machine Intelligence (2001)Google Scholar
  5. 5.
    Bevk, M., Kononenko, I.: Towards symbolic mining of images with association rules: Preliminary results on textures. Intelligent Data Analysis 10(4), 379–393 (2006)Google Scholar
  6. 6.
    Malik, H.H., Kender, J.R.: Clustering web images using association rules, interestingness measures, and hypergraph partitions. In: ICWE ’06: Proceedings of the 6th international conference on Web engineering, Palo Alto, California, USA, pp. 48–55. ACM Press, New York (2006), doi:10.1145/1145581.1145591CrossRefGoogle Scholar
  7. 7.
    Ordonez, C., Omiecinski, E.: Discovering association rules based on image content. In: Proceedings of the IEEE Advances in Digital Libraries Conference (ADL’99), Baltimore, Maryland, IEEE Computer Society Press, Los Alamitos (1999), citeseer.ist.psu.edu/ordonez99discovering.html Google Scholar
  8. 8.
    Christiansen, J.H., Yang, Y., Venkataraman, S., Richardson, L., Stevenson, P., Burton, N., Baldock, R.A., Davidson, D.R.: Emage: a spatial database of gene expression patterns during mouse embryo development. Nucleic Acids Research 34, 637–641 (2006)CrossRefGoogle Scholar
  9. 9.
    Gray, P.A., et al.: Mouse brain organization revealed through direct genome-scale tf expression analysis. Science 306(5705), 2255–2257 (2004)CrossRefGoogle Scholar
  10. 10.
    Theiler, K.: The House Mouse Atlas of Embryonic Development. Springer, New York (1989)Google Scholar
  11. 11.
    Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: Buneman, P., Jajodia, S. (eds.) Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, D.C., pp. 207–216. ACM Press, New York (1993), citeseer.ist.psu.edu/agrawal93mining.html CrossRefGoogle Scholar
  12. 12.
    Brin, S., Motwani, R., Ullman, J.D., Tsur, S.: Dynamic itemset counting and implication rules for market basket data. In: Peckham, J. (ed.) Proceedings ACM SIGMOD International Conference on Management of Data, pp. 255–264. ACM Press, New York (1997)Google Scholar
  13. 13.
    Jaccard, P.: The distribution of flora in the alpine zone. The New Phytologist 11(2), 37–50 (1912)CrossRefGoogle Scholar
  14. 14.
    Pallier, C., Scaffidi, P., Chopineau-Proust, S., Agresti, A., Nordmann, P., Bianchi, M.E., Marechal, V.: Association of chromatin proteins high mobility group box (hmgb) 1 and hmgb2 with mitotic chromosomes. Mol. Biol. Cell 14(8), 3414–3426 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Jano van Hemert
    • 1
  • Richard Baldock
    • 2
  1. 1.National e-Science Institute, University of EdinburghUK
  2. 2.MRC Human Genetics Unit, EdinburghUK

Personalised recommendations