Annotation of LC/ESI-MS Mass Signals

  • Ralf Tautenhahn
  • Christoph Böttcher
  • Steffen Neumann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4414)


Mass spectrometry is the work-horse technology of the emerging field of metabolomics. The identification of mass signals remains the largest bottleneck for a non-targeted approach: due to the analytical method, each metabolite in a complex mixture will give rise to a number of mass signals. In contrast to GC/MS measurements, for soft ionisation methods such as ESI-MS there are no extensive libraries of reference spectra or established deconvolution methods. We present a set of annotation methods which aim to group together mass signals measured from a single metabolite, based on rules for mass differences and peak shape comparison.

Availability: The software and documentation is available as an R package on


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Böcker06]
    Böcker, S., Letzel, M.C., Lipták, Z., Pervukhin, A.: Decomposing metabolomic isotope patterns. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 12–23. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. [Fiehn00]
    Fiehn, O., Kopka, J., Dörmann, P., Altmann, T., Trethewey, R., Willmitzer, L.: Metabolite profiling for plant functional genomics. Nature Biotechnology 18, 115 (2000)CrossRefGoogle Scholar
  3. [Goto97]
    Goto, S., Bono, H., Ogata, H., Fujibuchi, W., Nishioka, T., Sato, K., Kanehisa, M.: Organizing and computing metabolic pathway data in terms of binary relations. Pac. Symp. Biocomput., 175–186 (1997)Google Scholar
  4. [Kanehisa06]
    Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K.F., Itoh, M., et al.: From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34(Database issue), 354–357 (2006)CrossRefGoogle Scholar
  5. [Oliver98]
    Oliver, S.G., Winson, M.K., Kell, D.B., Baganz, F.: Systematic functional analysis of the yeast genome. Trends Biotechnol. 16(9), 373–378 (1998)CrossRefGoogle Scholar
  6. [Roepenack-Lahaye04]
    von Roepenack-Lahaye, E., Degenkolb, T., Zerjeski, M., Franz, M., Roth, U., et al.: Profiling of Arabidopsis Secondary Metabolites by Capillary Liquid Chromatography Coupled to Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry. Plant Physiology 134, 548–559 (2004)CrossRefGoogle Scholar
  7. [Shinbo06]
    Shinbo, Y., Nakamura, Y., Altaf-Ul-Amin, M., Asahi, H., Kurokawa, K., et al.: KNApSAcK: A comprehensive species-metabolite relationship database. In: Plant Metabolomics. Biotechnology in Agriculture and Forestry, pp. 165–181. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. [Smith06]
    Smith, C.A., Want, E.J., O’Maille, G., Abagyan, R., Siuzdak, G.: XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching and identification. Analytical Chemistry 78(3), 779–787 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Ralf Tautenhahn
    • 1
  • Christoph Böttcher
    • 1
  • Steffen Neumann
    • 1
  1. 1.Leibniz Institute of Plant Biochemistry, Department of Stress and Developmental, Biology, Weinberg 3, 06120 HalleGermany

Personalised recommendations