Advertisement

Bayesian Inference of Gene Regulatory Networks Using Gene Expression Time Series Data

  • Nicole Radde
  • Lars Kaderali
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4414)

Abstract

Differential equations have been established to model the dynamic behavior of gene regulatory networks in the last few years. They provide a detailed insight into regulatory processes at a molecular level. However, in a top down approach aiming at the inference of the underlying regulatory network from gene expression data, the corresponding optimization problem is usually severely underdetermined, since the number of unknowns far exceeds the number of timepoints available. Thus one has to restrict the search space in a biologically meaningful way.

We use differential equations to model gene regulatory networks and introduce a Bayesian regularized inference method that is particularly suited to deal with sparse and noisy datasets. Network inference is carried out by embedding our model into a probabilistic framework and maximizing the posterior probability. A specifically designed hierarchical prior distribution over interaction strenghts favours sparse networks, enabling the method to efficiently deal with small datasets.

Results on a simulated dataset show that our method correctly learns network structure and model parameters even for short time series. Furthermore, we are able to learn main regulatory interactions in the yeast cell cycle.

Keywords

gene regulatory network ordinary differential equations network inference Bayesian regularization Saccharomyces cerevisiae cell cycle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberts, B., Johnson, J., Lewis, J., Raff, M., Roberts, K., Walker, P.: Molecular Biology of the Cell. Garland Publishing, New York (2002)Google Scholar
  2. 2.
    Baehler, J.: Cell-cycle control of gene expression in budding and fission yeast. Annu.Rev.Genet. 39, 69–94 (2005)CrossRefGoogle Scholar
  3. 3.
    Beal, M.J., Falciani, F., Ghahramani, Z., Rangel, C., Wild, D.L.: A bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 21(3), 349–356 (2005)CrossRefGoogle Scholar
  4. 4.
    Bernard, A., Hartemink, A.J.: Informative structure priors: joint learning of dynamic regulatory networks from multiple types of data. In: Pacific Symposium on Biocomputing, pp. 459–470 (2005)Google Scholar
  5. 5.
    Chen, L., Aihara, K.: A Model of Periodic Oscillation for Genetic Regulatory Systems. IEEE Transactions on Circuits and Systems 49(10), 1429–1436 (2002)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Chen, C.C., Calzone, L., Csikasz-Nagy, A., Cross, F.R., Novak, B., Tyson, J.J.: Integrative Analysis of Cell Cycle Control in Budding Yeast. Mol.Biol.Cell 15(8), 3841–3862 (2004)CrossRefGoogle Scholar
  7. 7.
    Ermentrout, B.: Simulating, Analyzing and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students, 1st edn. Soc. for Industrial & Applied Math (2002)Google Scholar
  8. 8.
    Gebert, J., Radde, N., Weber, G.-W.: Modeling gene regulatory networks with piecewise linear differential equations. In: EJOR, Chall.of Cont.Opt. in Theory and Applications (To appear, 2006)Google Scholar
  9. 9.
    Gebert, J., Radde, N.: Modeling procaryotic biochemical networks with differential equations. In: AIP Conference Proc. 839, 526–533 (2006)Google Scholar
  10. 10.
    Gouze, J.L.: Positive and negative circuits in dynamical systems. J.Biol.Sys. 6(21), 11–15 (1998)zbMATHCrossRefGoogle Scholar
  11. 11.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)zbMATHGoogle Scholar
  12. 12.
    Gustafsson, M., et al.: Constructing and analyzing a large-scale gene-to-gene regulatory network - Lasso constrained inference and biological validation. IEEE/ACM Trans. Comp. Biol. Bioinf. 2, 254–261 (2005)CrossRefGoogle Scholar
  13. 13.
    Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of proteins. J.Mol.Biol. 3, 318–356 (1961)CrossRefGoogle Scholar
  14. 14.
    Kaderali, L., Zander, T., Faigle, U., Wolf, J., Schultze, J.L., Schrader, R.: CASPAR: A Hierarchical Bayesian Approach to predict Survival Times in Cancer from Gene Expression Data. Bioinformatics 22, 1495–1502 (2006)CrossRefGoogle Scholar
  15. 15.
    Kaderali, L.: A hierarchical Bayesian approach to regression and its application to predicting survival times in cancer. Shaker Verlag, Aachen (2006)zbMATHGoogle Scholar
  16. 16.
    Li, F., Long, T., Lu, Y., Ouyang, Q., Tang, C.: The yeast cell-cycle is robustly designed. PNAS 101(14), 4781–4786 (2004)CrossRefGoogle Scholar
  17. 17.
    Luenberger, D.G.: Introduction to Dynamic Systems. John Wiley & Sons, Chichester (1979)zbMATHGoogle Scholar
  18. 18.
    Radde, N., Gebert, J., Forst, C.V.: Systematic component selection for gene network refinement. Bioinformatics 22(21), 2674–2680 (2006)CrossRefGoogle Scholar
  19. 19.
    Rogers, S., Girolami, M.: A bayesian regression approach to the inference of regulatory networks from gene expression data. Bioinformatics 21(14), 3131–3137 (2005)CrossRefGoogle Scholar
  20. 20.
    Savageau, M., Alves, R.: Tutorial about “Mathematical Representation and Controlled Comparison of Biochemical Systems”. ICMSB2006, Muenchen (2006)Google Scholar
  21. 21.
    Spellman, P.T., Sherlock, G., et al.: Comprehenssive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization. Mol.Biol.Cell 9, 3273–3297 (1998)Google Scholar
  22. 22.
    Thomas, R.: On the relation between the logical structure of systems and their ability to generate mutliple steady states or sustained oscillations. Springer Series in Synergetics, vol. 9, pp. 180–193. Springer, Heidelberg (1981)Google Scholar
  23. 23.
    Tyson, J.J., Csikasz-Nagy, A., Novak, B.: The dynamics of cell cycle regulation. BioEssays 24, 1095–1109 (2002)CrossRefGoogle Scholar
  24. 24.
    Voit, E.: Computational Analysis of Biochemical Systems. Cambridge University Press, CambridgeGoogle Scholar
  25. 25.
    Yagil, G., Yagil, E.: On the relation between effector concentration and the rate of induced enzyme synthesis. Biophys.J. 11(1), 11–27 (1971)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Nicole Radde
    • 1
  • Lars Kaderali
    • 2
  1. 1.Center for Applied Computer Science (ZAIK), University of Cologne, Weyertal 80, 50931 KölnGermany
  2. 2.German Cancer Research Center (dkfz), Im Neuenheimer Feld 580, 69120 HeidelbergGermany

Personalised recommendations