On Sampling Abstraction of Continuous Time Logic with Durations

  • Paritosh K. Pandya
  • Shankara Narayanan Krishna
  • Kuntal Loya
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4424)


Duration Calculus (DC) is a real-time logic with measurement of duration of propositions in observation intervals. It is a highly expressive logic with continuous time behaviours (also called signals) as its models. Validity checking of DC is undecidable. We propose a method for validity checking of Duration Calculus by reduction to a sampled time version of this logic called Well Sampled Interval Duration Logic (WSIDL). This reduction relies on representing a continuous time behaviour by a well-sampled behaviour with 1-oversampling. We provide weak and strong reductions (abstractions) of logic DC to logic WSIDL which respectively preserve the validity and the counter models. By combining these reductions with previous work on deciding IDL, we have implemented a tool for validity checking of Duration Calculus. This provides a partial but practical method for validity checking of Duration Calculus. We present some preliminary experimental results to measure the success of this approach.


Model Check Continuous Time Change Point Time Logic Validity Check 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 332–335. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  2. 2.
    Bouajjani, A., Lakhnech, Y., Robbana, R.: From Duration Calculus to Linear Hybrid Automata. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 196–210. Springer, Heidelberg (1995)Google Scholar
  3. 3.
    Chakravorty, G., Pandya, P.K.: Digitizing Interval Duration Logic. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 167–179. Springer, Heidelberg (2003)Google Scholar
  4. 4.
    Fränzle, M.: Model-Checking Dense-Time Duration Calculus. In: Hansen, M.R. (ed.) Duration Calculus: A Logical Approach to Real-Time Systems Workshop proceedings of ESSLLI X (1998)Google Scholar
  5. 5.
    Fränzle, M.: Take it NP-easy: Bounded Model Construction for Duration Calculus. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 245–264. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Hung, D.V., Giang, P.H.: Sampling Semantics of Duration Calculus. In: Jonsson, B., Parrow, J. (eds.) FTRTFT 1996. LNCS, vol. 1135, pp. 188–207. Springer, Heidelberg (1996)Google Scholar
  7. 7.
    Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992)Google Scholar
  8. 8.
    Hirshfeld, Y., Rabinovich, A.: Logics for Real-time: Decidability and Complexity. Fundamenta Informaticae 62(1), 1–28 (2004)MATHMathSciNetGoogle Scholar
  9. 9.
    Krishna, S.N., Pandya, P.K.: Modal Strength reduction in QDDC. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 444–456. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Ouaknine, J., Worrell, J.: Revisiting Digitization, Robustness and Decidability for Timed Automata. In: Proc. 18th IEEE Symposium on LICS, pp. 198–207 (2003)Google Scholar
  11. 11.
    Ouaknine, J., Worrell, J.: On Decidability of Metric Temporal Logic. In: Proc. 20th IEEE Symposium on LICS, pp. 188–197 (2005)Google Scholar
  12. 12.
    Pandya, P.K.: Specifying and Deciding Quantified Discrete-time Duration Calculus Formulae using DCVALID: An Automata Theoretic Approach. In: Proc. RTTOOLS’(2001)Google Scholar
  13. 13.
    Pandya, P.K.: Model checking CTL*[DC]. In: Margaria, T., Yi, W. (eds.) ETAPS 2001 and TACAS 2001. LNCS, vol. 2031, pp. 559–573. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Pandya, P.K.: Interval duration logic: expressiveness and decidability. ENTCS (Proc. TPTS) 65(6), 1–19 (2002)Google Scholar
  15. 15.
    Sharma, B., Pandya, P.K., Chakraborty, S.: Bounded Validity Checking of Interval Duration Logic. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 301–316. Springer, Heidelberg (2005)Google Scholar
  16. 16.
    Zhou, C., Hoare, C.A.R., Ravn, A.P.: A Calculus of Durations. Info. Proc. Letters 40(5) (1991)Google Scholar
  17. 17.
    Zhou, C., Zhang, J., Yang, L., Li, X.: Linear duration invariants. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863, pp. 86–109. Springer, Heidelberg (1994)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Paritosh K. Pandya
    • 1
  • Shankara Narayanan Krishna
    • 2
  • Kuntal Loya
    • 2
  1. 1.Tata Institute of Fundamental ResearchIndia
  2. 2.Indian Institute of Technology, BombayIndia

Personalised recommendations