From Time Petri Nets to Timed Automata: An Untimed Approach

  • Davide D’Aprile
  • Susanna Donatelli
  • Arnaud Sangnier
  • Jeremy Sproston
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4424)


Time Petri Nets (TPN) and Timed Automata (TA) are widely-used formalisms for the modeling and analysis of timed systems. A recently-developed approach for the analysis of TPNs concerns their translation to TAs, at which point efficient analysis tools for TAs can then be applied. One feature of much of this previous work has been the use of timed reachability analysis on the TPN in order to construct the TA. In this paper we present a method for the translation from TPNs to TAs which bypasses the timed reachability analysis step. Instead, our method relies on the reachability graph of the underlying untimed Petri net. We show that our approach is competitive for the translation of a wide class of TPNs to TAs in comparison with previous approaches, both with regard to the time required to perform the translation, and with regard to the number of locations and clocks of the produced TA.


Reachable State Reachability Graph Time Automaton Clock Constraint Initial Valuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time. Information and Computation 104(1), 2–34 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alur, R., Dill, D.: Automata-theoretic verification of real-time systems. In: Formal Methods for Real-Time Computing, pp. 55–82 (1996)Google Scholar
  3. 3.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Behrmann, G., et al.: UPPAAL 4.0. In: Proceedings of the 3rd International Conference on Quantitative Evaluation of Systems (QEST 2006), pp. 125–126. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  5. 5.
    Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time Petri nets. IEEE Transactions on Software Engineering 17(3), 259–273 (1991)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Berthomieu, B., Vernadat, F.: State class constructions for branching analysis of time Petri nets. In: Garavel, H., Hatcliff, J. (eds.) ETAPS 2003 and TACAS 2003. LNCS, vol. 2619, pp. 442–457. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Bouyer, P., et al.: Updatable timed automata. Theoretical Computer Science 321(2-3), 291–345 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cassez, F., Roux, O.H.: Structural translation from time Petri nets to timed automata. Journal of Systems and Software 79(10), 1456–1468 (2006)CrossRefGoogle Scholar
  9. 9.
    Gardey, G., et al.: Romeo: A tool for analyzing time Petri nets. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 418–423. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Gardey, G., Roux, O.H., Roux, O.F.: State space computation and analysis of time Petri nets. Theory and Practice of Logic Programming (TPLP) (Special Issue on Specification Analysis and Verification of Reactive Systems) 6(3), 301–320 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
  12. 12.
  13. 13.
    Lime, D., Roux, O.H.: Model checking of time Petri nets using the state class timed automaton. Journal of Discrete Events Dynamic Systems - Theory and Applications (DEDS) 16(2), 179–205 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Menasche, M., Berthomieu, B.: Time Petri nets for analyzing and verifying time dependent protocols. In: Protocol Specification, Testing and Verification III, pp. 161–172 (1983)Google Scholar
  15. 15.
    Merlin, P.M., Farber, D.J.: Recoverability of communication protocols: Implications of a theoretical study. IEEE Trans. Comm. 24(9), 1036–1043 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
  17. 17.
    Toussaint, J., Simonot-Lion, F., Thomesse, J.-P.: Time constraints verification method based on time Petri nets. In: Proceedings of the 6th IEEE Computer Society Workshop on Future Trends of Distributed Computing Systems (FTDCS’97), pp. 262–267. IEEE Computer Society Press, Los Alamitos (1997)CrossRefGoogle Scholar
  18. 18.
    Uppaal web site:
  19. 19.
    Yovine, S.: Kronos: A verification tool for real-time systems. International Journal of Software Tools for Technology Transfer 1(1-2), 123–133 (1997)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Davide D’Aprile
    • 1
  • Susanna Donatelli
    • 1
  • Arnaud Sangnier
    • 2
  • Jeremy Sproston
    • 1
  1. 1.Dipartimento di Informatica, Università di Torino, 10149 TorinoItaly
  2. 2.Lab. Spécification & Verification, ENS Cachan – CNRS UMR 8643France

Personalised recommendations