Advertisement

Deciding an Interval Logic with Accumulated Durations

  • Martin Fränzle
  • Michael R. Hansen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4424)

Abstract

A decidability result and a model-checking procedure for a rich subset of Duration Calculus (DC) [19] is obtained through reductions to first-order logic over the real-closed field and to Multi-Priced Timed Automata (MPTA) [13]. In contrast to other reductions of fragments of DC to reachability problems in timed automata, the reductions do also cover constraints on positive linear combinations of accumulated durations. By being able to handle accumulated durations under chop as well as in arbitrary positive Boolean contexts, the procedures extend the results of Zhou et al. [22] on decidability of linear duration invariants to a much wider fragment of DC.

Keywords

Real-time systems metric-time temporal logic decidability model-checking multi-priced timed automata 

References

  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Comput. Sci. 126(2), 183–235 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Asarin, E., Caspi, P., Maler, O.: A Kleene theorem for timed automata. In: Winskel, G. (ed.) 12th Annual IEEE Symposium on Logic in Computer Science (LICS’97), IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  3. 3.
    Audemard, G., et al.: A SAT-based approach for solving formulas over boolean and linear mathematical propositions. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 193–208. Springer, Heidelberg (2002)Google Scholar
  4. 4.
    Bengtsson, J., et al.: Uppaal – a tool suite for automatic verification of real-time systems. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  5. 5.
    Bouajjani, A., Lakhnech, Y., Robbana, R.: From duration calculus to linear hybrid automata. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, Springer, Heidelberg (1995)Google Scholar
  6. 6.
    Dierks, H.: Synthesizing controllers from real-time specifications. In: Tenth International Symposium on System Synthesis (ISSS ‘97), pp. 126–133. IEEE Computer Society Press, Los Alamitos (1997)CrossRefGoogle Scholar
  7. 7.
    Fränzle, M.: Controller Design from Temporal Logic: Undecidability need not matter. Dissertation, Technische Fakultät der Chr.-Albrechts-Universität Kiel, Germany (1997)Google Scholar
  8. 8.
    Fränzle, M.: Model-checking dense-time duration calculus. Formal Aspects of Computing 16(2), 121–139 (2004)CrossRefzbMATHGoogle Scholar
  9. 9.
    Fränzle, M., Herde, C.: Efficient proof engines for bounded model checking of hybrid systems. In: Bicarregui, J., Butterfield, A., Arenas, A. (eds.) Proceedings Ninth International Workshop on Formal Methods for Industrial Critical Systems (FMICS 04). Electronic Notes in Theoretical Computer Science, vol. 133, pp. 119–137. Elsevier Science B.V, Amsterdam (2005)Google Scholar
  10. 10.
    Halpern, J., Moszkowski, B., Manna, Z.: A hardware semantics based on temporal intervals. In: Díaz, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 278–291. Springer, Heidelberg (1983)CrossRefGoogle Scholar
  11. 11.
    Hoenicke, J.: Combination of Processes, Data and Time. Dissertation, Carl von Ossietzky Universität, Oldenburg, Germany (2006)Google Scholar
  12. 12.
    Laknech, Y.: Specification and Verification of Hybrid and Real-Time Systems. Dissertation, Technische Fakultät der Chr.-Albrechts-Universität Kiel, Germany (1996)Google Scholar
  13. 13.
    Larsen, K.G., Rasmussen, J.I.: Optimal conditional reachability for multi-priced timed automata. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 230–244. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems, vol. 1. Springer, Heidelberg (1992)Google Scholar
  15. 15.
    Olderog, E.-R., Dierks, H.: Decomposing real-time specifications. In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. 16.
    Ravn, A.P.: Design of Embedded Real-Time Computing Systems. Doctoral dissertation, Department of Computer Science, Danish Technical University, Lyngby, DK (Oct. 1995), Available as technical report ID-TR 1995-170.Google Scholar
  17. 17.
    Sharma, P., Pandya, P.K., Chakraborty, S.: Bounded validity checking of interval duration logic. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, Springer, Heidelberg (2005)Google Scholar
  18. 18.
    Tarski, A.: A decision method for elementary algebra and geometry. RAND Corporation, Santa Monica (1948)zbMATHGoogle Scholar
  19. 19.
    Zhou, C., Hansen, M.R.: Duration Calculus — A Formal Approach to Real-Time Systems. EATCS monographs on theoretical computer science. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  20. 20.
    Zhou, C., Hansen, M.R., Sestoft, P.: Decidability and undecidability results for duration calculus. In: Enjalbert, P., Wagner, K.W., Finkel, A. (eds.) STACS 1993. LNCS, vol. 665, pp. 58–68. Springer, Heidelberg (1993)Google Scholar
  21. 21.
    Zhou, C., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Information Processing Letters 40(5), 269–276 (1991)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Zhou, C., et al.: Linear duration invariants. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863, pp. 86–109. Springer, Heidelberg (1994)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Martin Fränzle
    • 1
  • Michael R. Hansen
    • 2
  1. 1.Dpt. Informatik, C. v. Ossietzky Universität OldenburgGermany
  2. 2.Informatics and Math. Modelling, Technical University of Denmark 

Personalised recommendations