Advertisement

The Domain of Acoustics Seen from the Rough Sets Perspective

  • Bozena Kostek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4374)

Abstract

This research study presents rough set-based decision systems applications to the acoustical domain. Two areas are reviewed for this purpose, namely music information classification and retrieval and noise control. The main aim of this paper is to show results of both measurements of the acoustic climate and a survey on noise threat, conducted in schools and students’ music clubs. The measurements of the acoustic climate employ multimedia noise monitoring system engineered at the Multimedia Systems Department of the Gdansk University of Technology. Physiological effects of noise exposure are measured using pure tone audiometry and otoacoustic emission tests. All data are gathered in decision tables in order to explore the significance of attributes related to hearing loss occurence and subjective factors that attribute to the noise annoyance. Future direction of experiments are shortly outlined in Summary.

Keywords

Noise Exposure Basilar Membrane Decision Table Otoacoustic Emission Pure Tone Audiometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borg, E., Engstrom, B.: Noise level, inner hair cell damage, audiometric features and equal-energy hypothesis. J Acoust. Soc. Am. 86(5), 1776–1782 (1989)CrossRefGoogle Scholar
  2. 2.
    Budzynska, L., et al.: Supporting Experts in Ranking Generic Audio and Visual Objects. In: Proc. IEEE Workshop Signal Processing’2004, Poznan, pp. 81–86. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  3. 3.
    Budzynska, L., et al.: Multistimulus ranking versus pairwise comparison in assessing quality of musical instruments sounds. 118 AES Convention Paper, 6482, Barcelona (2005)Google Scholar
  4. 4.
    Criteria for a recommended standard, Occupational Noise Exposure. U.S. Department of Health and Human Services (1998)Google Scholar
  5. 5.
    http://www.cdc.gov/niosh/98-126.html (Criteria for a recommended standard)
  6. 6.
    Czyzewski, A., Kostek, B., Skarzynski, H.: Intelligent System for Environmental Noise Monitoring. In: Dunin-Keplicz, B., et al. (eds.) Monitoring, Security, and Rescue Techniques in Multiagent Systems. Advances in Soft Computing, pp. 397–410. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Czyzewski, A., Kostek, B., Skarzynski, H.: IT applications for the remote testing of communication senses. In: Information Technology Solutions for Health Care, Springer, Heidelberg (2006)Google Scholar
  8. 8.
    Czyzewski, A., Szczerba, M., Kostek, B.: Musical Phrase Representation and Recognition by Means of Neural Networks and Rough Sets. In: Peters, J.F., et al. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 254–278. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Czyzewski, A., Kostek, B.: Musical Metadata Retrieval with Flow Graphs. In: Tsumoto, S., et al. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 691–698. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Czyzewski, A., Kotus, J., Kostek, B.: Comparing Noise Levels and Audiometric Testing Results Employing IT Based Diagnostic Systems. In: The 33rd International Congress and Exposition on Noise Control Engineering, INTERNOISE’2004, Prague, August 22-24, pp. 22–24 (2004)Google Scholar
  11. 11.
    Dunn, D.E., et al.: Hearing loss in the chinchilla from impact and continuous noise exposure. J. Acoust. Soc. Am. 90(4), 1979–1985 (1991)CrossRefGoogle Scholar
  12. 12.
    Dziubinski, M., Dalka, P., Kostek, B.: Estimation of Musical Sound Separation Algorithm Effectiveness Employing Neural Networks. J. Intelligent Information Systems, Special Issue on Intelligent Multimedia Applications 24(2), 133–157 (2005)Google Scholar
  13. 13.
    Dziubinski, M., Kostek, B.: Octave Error Immune and Instantaneous Pitch Detection Algorithm. J. of New Music Research 34, 273–292 (2005)CrossRefGoogle Scholar
  14. 14.
    Engel, Z.W., Sadowski, J., et al.: Noise protection in Poland in European Legislation (in Polish). The Committee on Acoustics of the Polish Academy of Science & CIOP-PIB, Warsaw (2005)Google Scholar
  15. 15.
    Henderson, D., Hamernik, R.P.: Impulse noise: Critical review. J. Acoust. Soc. Am. 80(2), 569–584 (1986)CrossRefGoogle Scholar
  16. 16.
    Hippe, M.P.: Towards the Classification of Musical Works: A Rough Set Approach. In: Alpigini, J.J., et al. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 546–553. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Jelonek, J., et al.: Inferring Decision Rules from Jurys’ Ranking of Competing Violins. In: Proc. Stockholm Music Acoustic Conference, KTH, Stockholm, pp. 75–78 (2003)Google Scholar
  18. 18.
    Jelonek, J., et al.: Inducing jury’s preferences in terms of acoustic features of violin sounds. In: Rutkowski, L., et al. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 492–497. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    Johnston, J.D.: Transform Coding of Audio Signals Using Perceptual Noise Criteria. IEEE Journal on Selected Areas in Communications 6(2), 314–323 (1988)CrossRefGoogle Scholar
  20. 20.
    Komorowski, J., et al.: Rough Sets: A Tutorial. In: Pal, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization: A New Trend in Decision-Making, pp. 3–98. Springer, Heidelberg (1998)Google Scholar
  21. 21.
    Kostek, B.: Soft Computing in Acoustics, Applications of Neural Networks, Fuzzy Logic and Rough Sets to Musical Acoustics. Physica Verlag, Heidelberg (1999)Google Scholar
  22. 22.
    Kostek, B.: Perception-Based Data Processing in Acoustics. Applications to Music Information Retrieval and Psychophysiology of Hearing. Studies in Computational Intelligence, vol. 3. Springer, Heidelberg (2005)Google Scholar
  23. 23.
    Kostek, B.: Musical Instrument Classification and Duet Analysis Employing Music Information Retrieval Techniques. Proc. of the IEEE 92(4), 712–729 (2004)CrossRefGoogle Scholar
  24. 24.
    Kostek, B.: Intelligent Multimedia Applications - Scanning the Issue. J. Intelligent Information Systems, Special Issue on Intelligent Multimedia Applications 24(2), 95–97 (Guest Editor) (2005)Google Scholar
  25. 25.
    Kostek, B., Wojcik, J.: Machine Learning System for Estimating the Rhythmic Salience of Sounds. International J. of Knowledge-based and Intelligent Engineering Systems 9, 1–10 (2005)Google Scholar
  26. 26.
    Kostek, B., Czyzewski, A.: Processing of Musical Metadata Employing Pawlak’s Flow Graphs. In: Peters, J.F., et al. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 279–298. Springer, Heidelberg (2004)Google Scholar
  27. 27.
    Kotus, J., Kostek, B.: Investigation of Noise Threats and Their Impact on Hearing in Selected Schools. OSA’2006, Archives of Acoustics (in print, 2006)Google Scholar
  28. 28.
    Kotus, J.: Evaluation of Noise Threats and Their Impact on Hearing by Employing Teleinformatic Systems (Kostek, B., supervisor) (in preparation, 2007)Google Scholar
  29. 29.
    Lukasik, E.: AMATI-Multimedia Database of Violin Sounds. In: Proc. Stockholm Music Acoustics Conference, KTH Stockholm, pp. 79–82 (2003a)Google Scholar
  30. 30.
    Lukasik, E.: Timbre Dissimilarity of Violins: Specific Case of Musical Instruments Identification. In: Digital Media Processing for Multimedia Interactive Services, pp. 324–327. World Scientific, Singapore (2003b)CrossRefGoogle Scholar
  31. 31.
    Lukasik, E., Susmaga, R.: Unsupervised Machine Learning Methods in Timbral Violin Characteristics Visualization. In: Proc. Stockholm Music Acoustics Conference, KTH Stockholm, pp. 83–86 (2003)Google Scholar
  32. 32.
    Melnick, W.: Human temporary threshold shift (TTS) and damage risk. J. Acoust. Soc. Am. 90(1), 147–154 (1991)CrossRefGoogle Scholar
  33. 33.
    Pal, S.K., Polkowski, L., Skowron, A.: Rough-Neural Computing. Techniques for Computing with Words. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  34. 34.
    Pawlak, Z.: Rough Sets. International J. Computer and Information Sciences (1982)Google Scholar
  35. 35.
    Pawlak, Z.: Probability, Truth and Flow Graph. Electronic Notes in Theoretical Computer Science 82(4) (2003)Google Scholar
  36. 36.
    Pawlak, Z.: Elementary Rough Set Granules: Towards a Rough Set Processor. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing. Techniques for Computing with Words, pp. 5–13. Springer, Heidelberg (2004)Google Scholar
  37. 37.
    Pawlak, Z.: A Treatise on Rough Sets. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets IV. LNCS, vol. 3700, pp. 1–17. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  38. 38.
    Polish Standard PN-N-01307, Permissible sound level values in work-places and general requirements concerning taking measurements (in Polish) (1994)Google Scholar
  39. 39.
    Seixas, N., et al.: Alternative Metrics for Noise Exposure Among Construction Workers. Ann. Occup. Hyg. 49, 493–502 (2005)CrossRefGoogle Scholar
  40. 40.
    Wieczorkowska, A., et al.: Creating Reliable Database for Experiments on Extracting Emotions from Music. In: Klopotek, M.A., Wierzchon, S., Trojanowski, K. (eds.) Intelligent Information Processing and Web Mining, Proceedings of the International IIS: IIPWM’05 Conference, Gdansk, Poland. Advances in Soft Computing, pp. 395–402. Springer, Heidelberg (2005)Google Scholar
  41. 41.
    Wieczorkowska, A., et al.: Extracting Emotions from Music Data. In: Hacid, M.-S., et al. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 456–465. Springer, Heidelberg (2005)Google Scholar
  42. 42.
    Wieczorkowska, A., Ras, Z.W.: Do We Need Automatic Indexing of Musical Instruments? In: Proceedings of Warsaw IMTCI, International Workshop on Intelligent Media Technology for Communicative Intelligence, Warsaw, Poland, September 13–14, pp. 43–38. PJIIT - Publishing House (2004)Google Scholar
  43. 43.
    Wieczorkowska, A.: Towards Extracting Emotions from Music. In: Proceedings of Warsaw IMTCI, International Workshop on Intelligent Media Technology for Communicative Intelligence, Warsaw, Poland, September 13–14, pp. 181–183. PJIIT - Publishing House (2004)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Bozena Kostek
    • 1
  1. 1.Multimedia Systems Department, Gdansk University of Technology, and Excellence Center Communication Process: Hearing and Speech, PROKSIM, WarsawPoland

Personalised recommendations