Advertisement

Lattice Theory for Rough Sets

  • Jouni Järvinen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4374)

Abstract

This work focuses on lattice-theoretical foundations of rough set theory. It consist of the following sections: 1: Introduction 2: Basic Notions and Notation, 3: Orders and Lattices, 4: Distributive, Boolean, and Stone Lattices, 5: Closure Systems and Topologies, 6: Fixpoints and Closure Operators on Ordered Sets, 7: Galois Connections and Their Fixpoints, 8: Information Systems, 9: Rough Set Approximations, and 10: Lattices of Rough Sets. At the end of each section, brief bibliographic remarks are presented.

Keywords

Binary Relation Closure Operator Lattice Theory Complete Lattice Boolean Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexandroff, P.: Diskrete Räume. Matematičeskij Sbornik 2, 501–518 (1937)zbMATHGoogle Scholar
  2. 2.
    Armstrong, W.W.: Dependency structures of data base relationships. In: Information Processing 74, Proceedings of IFIP Congress 74, Stockholm, Sweden, August 5 - -10, 1974, pp. 580–583. North-Holland, Amsterdam (1974)Google Scholar
  3. 3.
    Balbes, R., Dwinger, P.: Distributive Lattices. University of Missouri Press, Columbia (1974)zbMATHGoogle Scholar
  4. 4.
    Banerjee, M., Chakraborty, M.K.: Algebras from rough sets. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing: Techniques for Computing with Words, pp. 157–184. Springer, Berlin (2004)Google Scholar
  5. 5.
    Biggs, N.L.: Discrete Mathematics. Oxford University Press, New York (1985)zbMATHGoogle Scholar
  6. 6.
    Birkhoff, G.: Rings of sets. Duke Mathematical Journal 3, 443–454 (1937)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Birkhoff, G.: Lattice Theory, 3rd edn. Colloquim publications, vol. XXV. American Mathematical Society (AMS), Providence (1995)Google Scholar
  8. 8.
    Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Graduate Texts in Mathematics, vol. 78. Springer, Berlin (1981)zbMATHGoogle Scholar
  9. 9.
    Codd, E.: A relational model of data for large shared data banks. Communications of the ACM 13, 377–387 (1970)CrossRefzbMATHGoogle Scholar
  10. 10.
    Comer, S.D.: An algebraic approach to the approximation of information. Fundamenta Informaticae 14, 492–502 (1991)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  12. 12.
    Day, A.: The lattice theory of functional dependencies and normal decompositions. International Journal of Algebra and Computation 2, 409–431 (1992)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Demri, S.P., Orlowska, E.S.: Incomplete Information: Structure, Inference, Complexity. Monographs in Theoretical Computer Science. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  14. 14.
    Erné, M., et al.: A primer on Galois connections. In: Proceedings of the 1991 Summer Conference on General Topology and Applications in Honor of Mary Ellen Rudin and Her Work. Annals of the New York Academy of Sciences, vol. 704, pp. 103–125. Academy of Sciences, New York (1993)Google Scholar
  15. 15.
    Everett, C.J.: Closure operators and Galois theory in lattices. Transactions of the American Mathematical Society 55, 514–525 (1944)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Feil, T., Krone, J.: Essential Discrete Mathematics for Computer Science. Prentice Hall, Upper Saddle River (2003)Google Scholar
  17. 17.
    Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations (Translated from the 1996 German original by Cornelia Franzke). Springer, Berlin (1999)zbMATHGoogle Scholar
  18. 18.
    Gehrke, M., Walker, E.: On the structure of rough sets. Bulletin of Polish Academy of Sciences. Mathematics 40, 235–245 (1992)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Gierz, G., et al.: A Compendium of Continuous Lattices. Springer, New York (1980)zbMATHGoogle Scholar
  20. 20.
    Goguen, J.A.: L-fuzzy sets. Journal of Mathematical Analysis and Applications 18, 145–174 (1967)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Grätzer, G.: General Lattice Theory (New appendices with Davey, B.A., et al), 2nd edn. Birkhäuser, Basel (1998)zbMATHGoogle Scholar
  22. 22.
    Iwinski, T.: Algebraic approach to rough sets. Bulletin of Polish Academy of Sciences. Mathematics 35, 673–683 (1987)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Järvinen, J.: Representations of Information Systems and Dependence Spaces, and Some Basic Algorithms. Ph.Lic. thesis, Department of Mathematics, University of Turku, Turku, Finland (1997)Google Scholar
  24. 24.
    Järvinen, J.: Preimage relations and their matrices. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 139–146. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  25. 25.
    Järvinen, J.: Knowledge Representation and Rough Sets. Ph.D. dissertation, Department of Mathematics, University of Turku, Turku, Finland, TUCS Dissertations 14 (1999)Google Scholar
  26. 26.
    Järvinen, J.: Approximations and rough sets based on tolerances. In: Ziarko, W., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 182–189. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  27. 27.
    Järvinen, J.: Armstrong systems on ordered sets. In: Calude, C.S., Dinneen, M.J., Sburlan, S. (eds.) Combinatorics, Computability and Logic. Springer Series in Discrete Mathematics and Theoretical Computer Science, pp. 137–149. Springer, London (2001)Google Scholar
  28. 28.
    Järvinen, J.: On the structure of rough approximations. Fundamenta Informaticae 53, 135–153 (2002)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Järvinen, J.: The ordered set of rough sets. In: Tsumoto, S., et al. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 49–58. Springer, Heidelberg (2004)Google Scholar
  30. 30.
    Järvinen, J.: Pawlak’s information systems in terms of Galois connections and functional dependencies. Fundamenta Informaticae 75 (2007)Google Scholar
  31. 31.
    Järvinen, J., Kondo, M., Kortelainen, J.: Modal-like operators in Boolean algebras, Galois connections and fixed points. Fundamenta Informaticae 76 (2007)Google Scholar
  32. 32.
    Järvinen, J., Kortelainen, J.: A note on definability in rough set theory. In: De Baets, B., et al. (eds.) Current Issues in Data and Knowledge Engineering, Problemy Współczesnej Nauki, Teoria i Zastosowania, Informatyka, pp. 272–277. EXIT, Warsaw (2004)Google Scholar
  33. 33.
    Järvinen, J., Kortelainen, J.: A unifying study between modal-like operators, topologies, and fuzzy sets. Technical Report 642, Turku Centre for Computer Science (TUCS), Turku, Finland (2004)Google Scholar
  34. 34.
    Jónsson, B., Tarski, A.: Boolean algebras with operators. Part I. American Journal of Mathematics 73, 891–939 (1951)CrossRefMathSciNetzbMATHGoogle Scholar
  35. 35.
    Kelley, J.L.: General Topology (Reprint of the 1955 edition, published by Van Nostrand). Graduate Texts in Mathematics, vol. 27. Springer, Heidelberg (1975)zbMATHGoogle Scholar
  36. 36.
    Kondo, M.: On the structure of generalized rough sets. Information Sciences 176, 589–600 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  37. 37.
    Kortelainen, J.: On relationship between modified sets, topological spaces and rough sets. Fuzzy Sets and Systems 61, 91–95 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  38. 38.
    Kortelainen, J.: A Topological Approach to Fuzzy Sets. Ph.D. dissertation, Lappeenranta University of Technology, Lappeenranta, Finland, Acta Universitatis Lappeenrantaensis 90 (1999)Google Scholar
  39. 39.
    McKinsey, J.C.C., Tarski, A.: The algebra of topology. Annals of Mathematics 45, 141–191 (1944)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Novotný, M., Pawlak, Z.: Algebraic theory of independence in information systems. Fundamenta Informaticae 14, 454–476 (1991)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Ore, O.: Galois connexions. Transactions of American Mathematical Society 55, 493–513 (1944)CrossRefMathSciNetzbMATHGoogle Scholar
  42. 42.
    Orłowska, E., Pawlak, Z.: Representation of nondeterministic information. Theoretical Computer Science 29, 27–39 (1984)CrossRefMathSciNetGoogle Scholar
  43. 43.
    Pawlak, Z.: Information systems theoretical foundations. Information Systems 6, 205–218 (1981)CrossRefzbMATHGoogle Scholar
  44. 44.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)CrossRefMathSciNetzbMATHGoogle Scholar
  45. 45.
    Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers Group, Dordrecht (1991)zbMATHGoogle Scholar
  46. 46.
    Pomykała, J., Pomykała, J.A.: The Stone algebra of rough sets. Bulletin of Polish Academy of Sciences. Mathematics 36, 495–512 (1988)zbMATHGoogle Scholar
  47. 47.
    Pomykała, J.A.: About tolerance and similarity relations in information systems. In: Alpigini, J.J., et al. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 175–182. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  48. 48.
    Raney, G.N.: Completely distributive complete lattices. Proceedings of American Mathematical Society 3, 677–680 (1952)CrossRefMathSciNetzbMATHGoogle Scholar
  49. 49.
    Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Slowinski, R. (ed.) Intelligent Decision Support, pp. 331–362. Kluwer Academic Publishers, Dordrecht (1992)Google Scholar
  50. 50.
    Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Slowinski, R., Vanderpooten, D.: A generalized definition of rough approximations based on similarity. IEEE Transactions on Knowledge and Data Engineering 12, 331–336 (2000)CrossRefGoogle Scholar
  52. 52.
    Steiner, A.K.: The lattice of topologies: Structure and complementation. Transactions of the American Mathematical Society 122, 379–398 (1966)CrossRefMathSciNetzbMATHGoogle Scholar
  53. 53.
    Sudkamp, T.A.: Self-conjugate functions on Boolean algebras. Notre Dame Journal of Formal Logic 19, 504–512 (1978)CrossRefMathSciNetzbMATHGoogle Scholar
  54. 54.
    Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics 5, 285–309 (1955)MathSciNetzbMATHGoogle Scholar
  55. 55.
    van Benthem, J.: Correspondence theory. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic. Volume II: Extensions of Classical Logic, pp. 167–247. Reidel, Dordrecht (1984)Google Scholar
  56. 56.
    Ward, M.: The closure operators of a lattice. Annals of Mathematics, Second Series 43, 191–196 (1942)MathSciNetGoogle Scholar
  57. 57.
    Yao, Y.Y.: On generalizing Pawlak approximation operators. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 298–307. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  58. 58.
    Yao, Y.Y.: Relational interpretations of neighborhood operators and rough set approximation operators. Information Sciences 111, 239–259 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  59. 59.
    Yao, Y.Y.: A comparative study of formal concept analysis and rough set theory in data analysis. In: Tsumoto, S., et al. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 59–68. Springer, Heidelberg (2004)Google Scholar
  60. 60.
    Yao, Y.Y., Lin, T.Y.: Generalization of rough sets using modal logics. Intelligent Automation and Soft Computing 2, 103–120 (1996)Google Scholar
  61. 61.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Jouni Järvinen
    • 1
  1. 1.Turku Centre for Computer Science (TUCS), FI-20014 University of TurkuFinland

Personalised recommendations