Assessment of Renal Function from 3D Dynamic Contrast Enhanced MR Images Using Independent Component Analysis

  • Frank G. Zöllner
  • Marek Kocinski
  • Arvid Lundervold
  • Jarle Rørvik
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Abstract

In this paper we present an automated, unsupervised, data-driven approach to assess renal function from 3D DCE-MR images. Applying independent component analysis to four different data sets acquired at different field strengths and with different measurement techniques, we show that functional regions in the human kidney can be recovered by a subset of independent components. Time intensity curves, reflecting perfusion in the kidney can be extracted from the processed data. The procedure may allow non-invasive, local assessment of renal function (e.g. glomerular filtration rate, GFR) from the image time series in future.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Michaely H, Herrmann K, Nael K, et al. Functional renal imaging: Nonvascular renal disease. Abdominal Imaging 2006.Google Scholar
  2. 2.
    Prasad PV. Functional MRI of the kidney: tools for translational studies of pathophysiology of renal disease. Am J Physiol Renal Physiol 2006;290(5):F958–F974.CrossRefGoogle Scholar
  3. 3.
    Huang AJ, Lee VS, Rusinek H. Functional renal MR imaging. Magn Reson Imaging Clin N Am 2004;12(3):469–86, vi.CrossRefGoogle Scholar
  4. 4.
    de Priester JA, den Boer JA, Giele EL, et al. MR renography: an algorithm for calculation and correction of cortical volume averaging in medullary renographs. J Magn Reson Imaging 2000;12(3):453–459.CrossRefGoogle Scholar
  5. 5.
    McKeown MJ, Makeig S, Brown GB, et al. Analysis of fMRI data by blind separation into independent spatial components. Human Brain Mapping 1998;6:160–188.CrossRefGoogle Scholar
  6. 6.
    Calhoun VD, Adali T, Hansen LK, et al. ICA of Functional MRI Data: An Overview. In: Proc. 4th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003); 2003. 281–287.Google Scholar
  7. 7.
    Calhoun VD, Adali T. Unmixing fMRI with independent component analysis. IEEE Eng Med Biol Mag 2006;25(2):79–90.CrossRefGoogle Scholar
  8. 8.
    Zöllner FG, Kocinski M, Lundervold A. Assessment of kidney function from motion-corrected DCE-MRI voxel time-courses using independent component analysis. In: Int. Workshop on Mining Brain Dynamics. Bergen, Norway; 2006.Google Scholar
  9. 9.
    Hyvärinen A, Karhunen J, Oja E. Independent Component Analysis. Wiley Interscience; 2001.Google Scholar
  10. 10.
    Sance R, Rogelj P, Ledesma-Carbayo MJ, et al. Motion correction in dynamic DCE-MRI studies for the evaluation of the renal function. MAGMA 2006;19(Supplement 7):106–107.Google Scholar
  11. 11.
    Zöllner FG, Sance R, Anderlik A, et al. Towards quantification of kidney function by clustering volumetric MRI perfusion time series. MAGMA 2006;19(Supplement 7):103–104.Google Scholar
  12. 12.
    Himberg J, Hyvärinen A. Icasso: software for investigating the reliability of ICA estimates by clustering and visualization. In: Proc. 2003 IEEE Workshop on Neural Networks for Signal Processing (NNSP2003); 2003. 259–268.Google Scholar
  13. 13.
    Michoux N, Vallee JP, Pechere-Bertschi A, et al. Analysis of contrast-enhanced MR images to assess renal function. Magn Reson Mater Phy 2006;19:167–179.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Frank G. Zöllner
    • 1
    • 2
  • Marek Kocinski
    • 3
  • Arvid Lundervold
    • 2
  • Jarle Rørvik
    • 1
  1. 1.Department for RadiologyUniversity of BergenBergenNorway
  2. 2.Department of BiomedicineUniversity of BergenBergenNorway
  3. 3.Institute of ElectronicsTechnical University of LodzLodzPoland

Personalised recommendations