Advertisement

A New Class of Distance Measures for Registration of Tubular Models to Image Data

  • Thomas Lange
  • Hans Lamecker
  • Michael Hünerbein
  • Sebastian Eulenstein
  • Siegfried Beller
  • Peter M. Schlag
Part of the Informatik aktuell book series (INFORMAT)

Abstract

In some registration applications additional user knowledge is available, which can improve and accelerate the registration process, especially for non-rigid registration. This is particularly important in the transfer of pre-operative plans to the operating room, e.g. for navigation. In case of tubular structures, such as vessels, a geometric representation can be extracted via segmentation and skeletonization. We present a new class of distance measures based on global filter kernels to compare such models efficiently with image data. The approach is validated in a non-rigid registration application with Powerdoppler ultrasound data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Selle D, Preim B, Schenk A, Peitgen HO. Analysis of vasculature for liver surgical planning. IEEE Trans Med Imag 2002;21(11):1344–1357.CrossRefGoogle Scholar
  2. 2.
    Beller S, Hünerbein M, Lange T, Eulenstein S, Gebauer B, Schlag PM. Image-guided surgery of liver metastases by 3D ultrasound-based optoelectronic navigation. Brit J Surg accepted.Google Scholar
  3. 3.
    Kybic J, Unser M. Fast parametric elastic image registration. IEEE Trans Med Imag 2003;12(11):1427–1441.CrossRefGoogle Scholar
  4. 4.
    Modersitzki J. Numerical Methods for Image Registration. Oxford University Press; 2004.Google Scholar
  5. 5.
    Roche A, Pennec X, Malandain G, Ayache N. Rigid registration of 3-D ultrasound with MR images: A new approach combining intensity and gradient information. IEEE Trans Med Imag 2001;20(10):1038–1049.CrossRefGoogle Scholar
  6. 6.
    Viola PA, III WMWells. Alignment by maximization of mutual information. Procs ICCV 1995; 16–23.Google Scholar
  7. 7.
    Weese J, Rösch P, Netsch T, Blaffert T, Quist M. Gray-value based registration of CT and MR images by maximization of local correlation. In: MICCAI; 1999. 656–663.Google Scholar
  8. 8.
    Haber E, Modersitzki J. Intensity gradient-based registration and fusion of multimodal images. Procs MICCAI 2006; 726–733.Google Scholar
  9. 9.
    Droske M, Rumpf M. A variational approach to non-rigid morphological registration. SIAM Appl Math 2004;64(2):668–687.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Henn S, Hömke L, Witsch K. Lesion preserving image registration with applications to human brains. In: Procs DAGM; 2004. 143–154.Google Scholar
  11. 11.
    Schumacher H, Franz A, Fischer B. Weighted medical image registration with automatic mask generation. Procs SPIE 2006; in print.Google Scholar
  12. 12.
    Aylward SR, J Jomier, Weeks S, Bullitt E. Registration and analysis of vascular images. Int J Comput Vision 2003;55(2–3):123–138.CrossRefGoogle Scholar
  13. 13.
    Frangi AF, Niessen WJ, Vincken KL, Viergever MA. Multiscale vessel enhancement filtering. Procs MICCAI 1998; 130–137.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Thomas Lange
    • 1
  • Hans Lamecker
    • 2
  • Michael Hünerbein
    • 1
  • Sebastian Eulenstein
    • 1
  • Siegfried Beller
    • 1
  • Peter M. Schlag
    • 1
  1. 1.Klinik für Chirurgie und Chirurgische Onkologie, CharitéUniversitätsmedizin BerlinBerlin
  2. 2.Zuse-Institut BerlinBerlin

Personalised recommendations