Towards SMT Model Checking of Array-Based Systems

  • Silvio Ghilardi
  • Enrica Nicolini
  • Silvio Ranise
  • Daniele Zucchelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5195)


We introduce the notion of array-based system as a suitable abstraction of infinite state systems such as broadcast protocols or sorting programs. By using a class of quantified-first order formulae to symbolically represent array-based systems, we propose methods to check safety (invariance) and liveness (recurrence) properties on top of Satisfiability Modulo Theories solvers. We find hypotheses under which the verification procedures for such properties can be fully mechanized.


Model Check Local Component Liveness Property Broadcast Protocol Progress Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems for infinite state systems. In: Proc. of LICS 1996, pp. 313–321 (1996)Google Scholar
  2. 2.
    Abdulla, P.A., Delzanno, G., Ben Henda, N., Rezine, A.: Regular model checking without transducers. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 721–736. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized verification of infinite-state processes with global conditions. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 145–157. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Bouajjani, A., Habermehl, P., Jurski, Y., Sighireanu, M.: Rewriting systems with data. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 1–22. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T.A., Ranise, S., van Rossum, P., Sebastiani, R.: Efficient theory combination via boolean search. Information and Computation 204(10), 1493–1525 (2006)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    de Moura, L.M., Rueß, H., Sorea, M.: Lazy theorem proving for bounded model checking over infinite domains. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 438–455. Springer, Heidelberg (2002)Google Scholar
  8. 8.
    Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press, London (1972)MATHGoogle Scholar
  9. 9.
    Fang, Y., Piterman, N., Pnueli, A., Zuck, L.D.: Liveness with invisible ranking. Software Tools for Technology 8(3), 261–279 (2006)CrossRefGoogle Scholar
  10. 10.
    Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Towards SMT model checking of array-based systems. Technical Report RI318-08, Università degli Studi di Milano (2008),
  11. 11.
    Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: On local reasoning in verification. In: Proc. of TACAS 2008. LNCS, vol. 4963, pp. 265–281. Springer, Heidelberg (2008)Google Scholar
  12. 12.
    Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking with rich assertional languages. Theoretical Computer Science 256(1-2), 93–112 (2001)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Manna, Z., Pnueli, A.: A hierarchy of temporal properties. In: Proc. of PODC 1990, pp. 377–410. ACM Press, New York (1990)CrossRefGoogle Scholar
  14. 14.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL. Journal of the ACM 53(6), 937–977 (2006)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Rybina, T., Voronkov, A.: A logical reconstruction of reachability. In: Broy, M., Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 222–237. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Sebastiani, R.: Lazy satisfiability modulo theories. Journal on Satisfiability, Boolean Modeling and Computation 3, 141–224 (2007)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Silvio Ghilardi
    • 1
  • Enrica Nicolini
    • 2
  • Silvio Ranise
    • 1
    • 2
  • Daniele Zucchelli
    • 1
  1. 1.Dipartimento di InformaticaUniversità degli Studi di MilanoItalia
  2. 2.LORIA & INRIA-LorraineNancyFrance

Personalised recommendations