Advertisement

On Automating the Calculus of Relations

  • Peter Höfner
  • Georg Struth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5195)

Abstract

Relation algebras provide abstract equational axioms for the calculus of binary relations. They name an established area of mathematics and have found numerous applications in computing. We prove more than hundred theorems of relation algebras with off-the-shelf automated theorem provers. They form a basic calculus from which more advanced applications can be explored. We also present two automation experiments from the formal methods literature. Our results further demonstrate the feasibility of automated deduction with complex algebraic structures. They also open a new perspective for automated deduction in relational formal methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar
  3. 3.
    Bachmair, L., Ganzinger, H.: Ordered chaining calculi for first-order theories of transitive relations. J. ACM 45(6), 1007–1049 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Berghammer, R., Neumann, F.: An OBDD-based computer algebra system for relations. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 40–51. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Berghammer, R., Zierer, H.: Relational algebraic semantics of deterministic and nondeterministic programs. Theoretical Computer Science 43, 123–147 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bird, R., de Moor, O.: Algebra of Programming. Prentice-Hall, Englewood Cliffs (1996)Google Scholar
  7. 7.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  8. 8.
    Dang, H.-H., Höfner, P.: First-order theorem prover evaluation w.r.t. relation- and Kleene algebra. In: R. Berghammer, B. Möller, and G. Struth, editors, RelMiCS10/AKA5 - PhD Programme, Technical Report 2008-04, University of Augsburg, pp. 48–52 (2008)Google Scholar
  9. 9.
    de Roever, W.-P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods and their Comparison. Cambridge University Press, Cambridge (2001)Google Scholar
  10. 10.
    Formisano, A., Omodeo, E.G., Orłowska, E.: A Prolog tool for relational translations of modal logics: A front-end for relational proof systems. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 1–11. Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Henkin, L., Monk, D.J., Tarski, A.: Cylindric Algebras, Part I. North-Holland, Amsterdam (1971)Google Scholar
  12. 12.
    Huntington, E.V.: Boolean algebra. A correction. Trans. AMS 35, 557–558 (1933)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Huntington, E.V.: New sets of independent postulates for the algebra of logic. Trans. AMS 35, 274–304 (1933)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press, Cambridge (2006)Google Scholar
  15. 15.
    Jónsson, B., Tarski, A.: Boolean algebras with operators I. American J. Mathematics 74, 891–939 (1951)CrossRefGoogle Scholar
  16. 16.
    Kahl, W.: Calculational relation-algebraic proofs in Isabelle/Isar. In: Berghammer, R., Möller, B., Struth, G. (eds.) RelMiCS 2003. LNCS, vol. 3051, pp. 179–190. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    MacCaull, W., Orlowska, E.: Correspondence results for relational proof systems with application to the Lambek calculus. Studia Logica 71(3), 389–414 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Maddux, R.: A sequent calculus for relation algebras. Annals of Pure and Applied Logic 25, 73–101 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Maddux, R.: Relation Algebras. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  20. 20.
    Maddux, R.D.: Relation-algebraic semantics. Theoretical Computer Science 160(1&2), 1–85 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    McCune, W.: Prover9 and Mace4, http://www.cs.unm.edu/~mccune/prover9
  22. 22.
    McCune, W.: Solution of the Robbins problem. J. Automated Reasoning 19(3), 263–276 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Schmidt, G., Ströhlein, T.: Relations and Graphs: Discrete Mathematics for Computer Scientists. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  24. 24.
    Sinz, C.: System description: ARA — An automated theorem prover for relation algebras. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 177–182. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  25. 25.
    Spivey, J.M.: Understanding Z. Cambridge University Press, Cambridge (1988)zbMATHGoogle Scholar
  26. 26.
    Sutcliffe, G., Suttner, C.: The TPTP problem library: CNF release v1.2.1. J. Automated Reasoning 21(2), 177–203 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Sutcliffe, G., Suttner, C.: Evaluating general purpose automated theorem proving systems. Artificial Intelligence 131(1–2), 39–54 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Tarski, A.: On the calculus of relations. Journal of Symbolic Logic 6(3), 73–89 (1941)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Tarski, A., Givant, S.R.: A Formalization of Set Theory Without Variables. American Mathematical Society (1987)Google Scholar
  30. 30.
    von Oheimb, D., Gritzner, T.F.: Rall: Machine-supported proofs for relation algebra. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 380–394. Springer, Heidelberg (1997)Google Scholar
  31. 31.
    Weidenbach, C., Schmidt, R.A., Hillenbrand, T., Rusev, R., Topic, D.: System description: SPASS version 3.0. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 514–520. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Peter Höfner
    • 1
  • Georg Struth
    • 2
  1. 1.Institut für InformatikUniversität AugsburgGermany
  2. 2.Department of Computer ScienceUniversity of SheffieldUnited Kingdom

Personalised recommendations