Focusing in Linear Meta-logic

  • Vivek Nigam
  • Dale Miller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5195)


It is well known how to use an intuitionistic meta-logic to specify natural deduction systems. It is also possible to use linear logic as a meta-logic for the specification of a variety of sequent calculus proof systems. Here, we show that if we adopt different focusing annotations for such linear logic specifications, a range of other proof systems can also be specified. In particular, we show that natural deduction (normal and non-normal), sequent proofs (with and without cut), tableaux, and proof systems using general elimination and general introduction rules can all be derived from essentially the same linear logic specification by altering focusing annotations. By using elementary linear logic equivalences and the completeness of focused proofs, we are able to derive new and modular proofs of the soundness and completeness of these various proofs systems for intuitionistic and classical logics.


Classical Logic Proof System Atomic Formula Intuitionistic Logic Linear Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [And92]
    Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. of Logic and Computation 2(3), 297–347 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  2. [DM94]
    D’Agostino, M., Mondadori, M.: The taming of the cut. Classical refutations with analytic cut 4(3), 285–319 (1994)zbMATHMathSciNetGoogle Scholar
  3. [FM88]
    Felty, A., Miller, D.: Specifying theorem provers in a higher-order logic programming language. In: Ninth International Conference on Automated Deduction, Argonne, IL, May 1988, pp. 61–80. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  4. [Gen69]
    Gentzen, G.: Investigations into logical deductions. In: Szabo, M.E. (ed.) The Collected Papers of Gerhard Gentzen, pp. 68–131. North-Holland, Amsterdam (1969)Google Scholar
  5. [Gir06]
    Girard, J.-Y.: Le Point Aveugle: Cours de logique: Tome 1, Vers la perfection. Hermann (2006)Google Scholar
  6. [HHP93]
    Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of the ACM 40(1), 143–184 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  7. [HM94]
    Hodas, J., Miller, D.: Logic programming in a fragment of intuitionistic linear logic. Information and Computation 110(2), 327–365 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  8. [LM07]
    Liang, C., Miller, D.: Focusing and polarization in intuitionistic logic. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 451–465. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. [Mil96]
    Miller, D.: Forum: A multiple-conclusion specification logic. Theoretical Computer Science 165(1), 201–232 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  10. [MN07]
    Miller, D., Nigam, V.: Incorporating tables into proofs. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 466–480. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. [MP02]
    Miller, D., Pimentel, E.: Using linear logic to reason about sequent systems. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 2–23. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. [MP04]
    Miller, D., Pimentel, E.: Linear logic as a framework for specifying sequent calculus. In: van Eijck, J., van Oostrom, V., Visser, A. (eds.) Logic Colloquium 1999: Proceedings of the Annual European Summer Meeting of the Association for Symbolic Logic, pp. 111–135. A. K. Peters Ltd (2004)Google Scholar
  13. [NM08]
    Nigam, V., Miller, D.: Focusing in linear meta-logic: Extended report,
  14. [NP01]
    Negri, S., Von Plato, J.: Structural Proof Theory. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  15. [Par92]
    Parigot, M.: Free deduction: An analysis of “computations” in classical logic. In: Proceedings of the First Russian Conference on Logic Programming, London, UK, pp. 361–380. Springer, Heidelberg (1992)Google Scholar
  16. [Pfe89]
    Pfenning, F.: Elf: A language for logic definition and verified metaprogramming. In: Fourth Annual Symposium on Logic in Computer Science, Monterey, CA, June 1989, pp. 313–321 (1989)Google Scholar
  17. [Pfe00]
    Pfenning, F.: Structural cut elimination I. intuitionistic and classical logic 157(1/2), 84–141 (2000)zbMATHMathSciNetGoogle Scholar
  18. [Pim01]
    Pimentel, E.G.: Lógica linear e a especificação de sistemas computacionais. PhD thesis, Universidade Federal de Minas Gerais, Belo Horizonte, M.G., Brasil, Written in English (December 2001)Google Scholar
  19. [PM05]
    Pimentel, E., Miller, D.: On the specification of sequent systems. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 352–366. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. [Pra65]
    Prawitz, D.: Natural Deduction. Almqvist & Wiksell, Uppsala (1965)Google Scholar
  21. [SB98]
    Sieg, W., Byrnes, J.: Normal natural deduction proofs (in classical logic). Studia Logica 60(1), 67–106 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  22. [SH84]
    Schroeder-Heister, P.: A natural extension of natural deduction. Journal of Symbolic Logic 49(4), 1284–1300 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  23. [Smu68]
    Smullyan, R.M.: Analytic cut. J. of Symbolic Logic 33(4), 560–564 (1968)zbMATHCrossRefMathSciNetGoogle Scholar
  24. [vP01]
    von Plato, J.: Natural deduction with general elimination rules. Archive for Mathematical Logic 40(7), 541–567 (2001)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Vivek Nigam
    • 1
  • Dale Miller
    • 1
  1. 1.INRIA & LIX/École PolytechniquePalaiseauFrance

Personalised recommendations