MaLARea SG1 - Machine Learner for Automated Reasoning with Semantic Guidance

  • Josef Urban
  • Geoff Sutcliffe
  • Petr Pudlák
  • Jiří Vyskočil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5195)

Abstract

This paper describes a system combining model-based and learning-based methods for automated reasoning in large theories, i.e. on a large number of problems that use many axioms, lemmas, theorems, definitions, and symbols, in a consistent fashion. The implementation is based on the existing MaLARea system, which cycles between theorem proving attempts and learning axiom relevance from successes. This system is extended by taking into account semantic relevance of axioms, in a way similar to that of the SRASS system. The resulting combined system significantly outperforms both MaLARea and SRASS on the MPTP Challenge large theory benchmark, in terms of both the number of problems solved and the time taken to find solutions. The design, implementation, and experimental testing of the system are described here.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baumgartner, P., Fuchs, A., Tinelli, C.: Darwin - A Theorem Prover for the Model Evolution Calculus. In: Sutcliffe, G., Schulz, S., Tammet, T. (eds.) Proceedings of the Workshop on Empirically Successful First Order Reasoning, 2nd International Joint Conference on Automated Reasoning (2004)Google Scholar
  2. 2.
    Carlson, A., Cumby, C., Rosen, J., Roth, D.: SNoW User’s Guide. Technical Report UIUC-DCS-R-99-210, University of Illinois, Urbana-Champaign (1999)Google Scholar
  3. 3.
    Claessen, K., Sorensson, N.: New Techniques that Improve MACE-style Finite Model Finding. In: Baumgartner, P., Fermueller, C. (eds.) Proceedings of the CADE-19 Workshop: Model Computation - Principles, Algorithms, Applications (2003)Google Scholar
  4. 4.
    Denney, E., Fischer, B., Schumann, J.: Using Automated Theorem Provers to Certify Auto-generated Aerospace Software. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 198–212. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Fuchs, M.: Controlled Use of Clausal Lemmas in Connection Tableau Calculi. Journal of Symbolic Computation 29(2), 299–341 (2000)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    McCune, W.W.: Mace4 Reference Manual and Guide. Technical Report ANL/MCS-TM-264, Argonne National Laboratory, Argonne, USA (2003)Google Scholar
  7. 7.
    Meng, J., Paulson, L.: Lightweight Relevance Filtering for Machine-Generated Resolution Problems. In: Sutcliffe, G., Schmidt, R., Schulz, S. (eds.) Proceedings of the FLoC 2006 Workshop on Empirically Successful Computerized Reasoning, 3rd International Joint Conference on Automated Reasoning. CEUR Workshop Proceedings, vol. 192, pp. 53–69 (2006)Google Scholar
  8. 8.
    Meng, J., Paulson, L.: Translating Higher-order Problems to First-order Clauses. Journal of Automated Reasoning 40(1), 35–60 (2008)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Plaisted, D.A., Yahya, A.: A Relevance Restriction Strategy for Automated Deduction. Artificial Intelligence 144(1-2), 59–93 (2003)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Pudlak, P.: Search for Faster and Shorter Proofs using Machine Generated lemmas. In: Sutcliffe, G., Schmidt, R., Schulz, S. (eds.) Proceedings of the FLoC 2006 Workshop on Empirically Successful Computerized Reasoning, 3rd International Joint Conference on Automated Reasoning. CEUR Workshop Proceedings, vol. 192, pp. 34–52 (2006)Google Scholar
  11. 11.
    Pudlak, P.: Draft Thesis: Verification of Mathematical Proofs (2007)Google Scholar
  12. 12.
    Quaife, A.: Automated Development of Fundamental Mathematical Theories. Kluwer Academic Publishers, Dordrecht (1992)MATHGoogle Scholar
  13. 13.
    Ramachandran, D., Reagan, P., Goolsbey, K.: First-orderized ResearchCyc: Expressiveness and Efficiency in a Common Sense Knowledge Base. In: Shvaiko, P. (ed.) Proceedings of the Workshop on Contexts and Ontologies: Theory, Practice and Applications (2005)Google Scholar
  14. 14.
    Riazanov, A., Voronkov, A.: The Design and Implementation of Vampire. AI Communications 15(2-3), 91–110 (2002)MATHGoogle Scholar
  15. 15.
    Schulz, S.: E: A Brainiac Theorem Prover. AI Communications 15(2-3), 111–126 (2002)MATHGoogle Scholar
  16. 16.
    Sutcliffe, G.: The 3rd IJCAR Automated Theorem Proving Competition. AI Communications 20(2), 117–126 (2007)MathSciNetGoogle Scholar
  17. 17.
    Sutcliffe, G., Dvorsky, A.: Proving Harder Theorems by Axiom Reduction. In: Russell, I., Haller, S. (eds.) Proceedings of the 16th International FLAIRS Conference, pp. 108–112. AAAI Press, Menlo Park (2003)Google Scholar
  18. 18.
    Sutcliffe, G., Puzis, Y.: SRASS - a Semantic Relevance Axiom Selection System. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 295–310. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Sutcliffe, G., Suttner, C.B.: The TPTP Problem Library: CNF Release v1.2.1. Journal of Automated Reasoning 21(2), 177–203 (1998)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Sutcliffe, G., Zimmer, J., Schulz, S.: TSTP Data-Exchange Formats for Automated Theorem Proving Tools. In: Zhang, W., Sorge, V. (eds.) Distributed Constraint Problem Solving and Reasoning in Multi-Agent Systems. Frontiers in Artificial Intelligence and Applications, vol. 112, pp. 201–215. IOS Press, Amsterdam (2004)Google Scholar
  21. 21.
    Urban, J.: MizarMode - An Integrated Proof Assistance Tool for the Mizar Way of Formalizing Mathematics. Journal of Applied Logic 4(4), 414–427 (2006)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Urban, J.: MPTP 0.2: Design, Implementation, and Initial Experiments. Journal of Automated Reasoning 37(1-2), 21–43 (2006)MATHCrossRefGoogle Scholar
  23. 23.
    Urban, J.: MaLARea: a Metasystem for Automated Reasoning in Large Theories. In: Urban, J., Sutcliffe, G., Schulz, S. (eds.) Proceedings of the CADE-21 Workshop on Empirically Successful Automated Reasoning in Large Theories, pp. 45–58 (2007)Google Scholar
  24. 24.
    Veroff, R.: Using Hints to Increase the Effectiveness of an Automated Reasoning Program: Case Studies. Journal of Automated Reasoning 16(3), 223–239 (1996)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Weidenbach, C.: Combining Superposition, Sorts and Splitting. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1965–2011. Elsevier Science, Amsterdam (2001)CrossRefGoogle Scholar
  26. 26.
    Zhang, Y., Sutcliffe, G.: Lemma Management Techniques for Automated Theorem Proving. In: Konev, B., Schulz, S. (eds.) Proceedings of the 5th International Workshop on the Implementation of Logics, pp. 87–94 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Josef Urban
    • 1
  • Geoff Sutcliffe
    • 2
  • Petr Pudlák
    • 1
  • Jiří Vyskočil
    • 1
  1. 1.Charles UniversityCzech Republic
  2. 2.University of MiamiUSA

Personalised recommendations