iProver – An Instantiation-Based Theorem Prover for First-Order Logic (System Description)

  • Konstantin Korovin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5195)


iProver is an instantiation-based theorem prover which is based on Inst-Gen calculus, complete for first-order logic. One of the distinctive features of iProver is a modular combination of instantiation and propositional reasoning. In particular, any state-of-the art SAT solver can be integrated into our framework. iProver incorporates state-of-the-art implementation techniques such as indexing, redundancy elimination, semantic selection and saturation algorithms. Redundancy elimination implemented in iProver include: dismatching constraints, blocking non-proper instantiations and propositional-based simplifications. In addition to instantiation, iProver implements ordered resolution calculus and a combination of instantiation and ordered resolution. In this paper we discuss the design of iProver and related implementation issues.


Saturation Algorithm Propositional Reasoning Ground Clause Redundancy Elimination Input Clause 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baumgartner, P., Fuchs, A., Tinelli, C.: Implementing the model evolution calculus. International Journal on Artificial Intelligence Tools 15(1), 21–52 (2006)CrossRefGoogle Scholar
  2. 2.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving. In: Proc. 18th IEEE Symposium on LICS, pp. 55–64. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  4. 4.
    Ganzinger, H., Korovin, K.: Integrating equational reasoning into instantiation-based theorem proving. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 71–84. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Ganzinger, H., Korovin, K.: Theory Instantiation. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 497–511. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Graf, P.: Term Indexing. LNCS, vol. 1053. Springer, Heidelberg (1996)Google Scholar
  7. 7.
    Korovin, K.: An invitation to instantiation-based reasoning: From theory to practice. In: Podelski, A., Voronkov, A., Wilhelm, R. (eds.) Volume in memoriam of Harald Ganzinger (to appear) (invited paper)Google Scholar
  8. 8.
    Riazanov, A., Voronkov, A.: Splitting without backtracking. In: Proc. of the 17 International Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 611–617. Morgan Kaufmann, San Francisco (2001)Google Scholar
  9. 9.
    Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI Communications 15(2-3), 91–110 (2002)zbMATHGoogle Scholar
  10. 10.
    Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2-3), 111–126 (2002)zbMATHGoogle Scholar
  11. 11.
    Schulz, S.: Simple and Efficient Clause Subsumption with Feature Vector Indexing. In: Sutcliffe, G., Schulz, S., Tammet, T. (eds.) Proc. of the IJCAR-2004 Workshop on Empirically Successful First-Order Theorem Proving, Cork, Ireland. ENTCS. Elsevier Science, Amsterdam (2004)Google Scholar
  12. 12.
    Sutcliffe, G.: CASC-21 proceedings of the CADE-21 ATP system competition (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Konstantin Korovin
    • 1
  1. 1.School of Computer ScienceThe University of Manchester 

Personalised recommendations