Proving Bounds on Real-Valued Functions with Computations

  • Guillaume Melquiond
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5195)


Interval-based methods are commonly used for computing numerical bounds on expressions and proving inequalities on real numbers. Yet they are hardly used in proof assistants, as the large amount of numerical computations they require keeps them out of reach from deductive proof processes. However, evaluating programs inside proofs is an efficient way for reducing the size of proof terms while performing numerous computations. This work shows how programs combining automatic differentiation with floating-point and interval arithmetic can be used as efficient yet certified solvers. They have been implemented in a library for the Coq proof system. This library provides tactics for proving inequalities on real-valued expressions.


Interval Arithmetic Proof Assistant Taylor Model Interval Extension Arithmetic Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grégoire, B., Théry, L.: A purely functional library for modular arithmetic and its application to certifying large prime numbers. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 423–437. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Grégoire, B., Théry, L., Werner, B.: A computational approach to Pocklington certificates in type theory. In: Hagiya, M., Wadler, P. (eds.) FLOPS 2006. LNCS, vol. 3945, pp. 97–113. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Mahboubi, A.: Implementing the cylindrical algebraic decomposition within the Coq system. Mathematical Structure in Computer Sciences 17(1) (2007)Google Scholar
  4. 4.
    Harrison, J.: Verifying nonlinear real formulas via sums of squares. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 102–118. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Harrison, J.: Floating point verification in HOL light: The exponential function. In: Algebraic Methodology and Software Technology, 246–260 (1997)Google Scholar
  6. 6.
    Akbarpour, B., Paulson, L.C.: Towards automatic proofs of inequalities involving elementary functions. In: Cook, B., Sebastiani, R. (eds.) PDPAR: Pragmatics of Decision Procedures in Automated Reasoning, pp. 27–37 (2006)Google Scholar
  7. 7.
    Muñoz, C., Lester, D.: Real number calculations and theorem proving. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 195–210. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Daumas, M., Melquiond, G., Muñoz, C.: Guaranteed proofs using interval arithmetic. In: Montuschi, P., Schwarz, E. (eds.) Proceedings of the 17th IEEE Symposium on Computer Arithmetic, Cape Cod, MA, USA, pp. 188–195 (2005)Google Scholar
  9. 9.
    Zumkeller, R.: Formal global optimisation with Taylor models. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 408–422. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Stevenson, D., et al.: An American national standard: IEEE standard for binary floating point arithmetic. ACM SIGPLAN Notices 22(2), 9–25 (1987)Google Scholar
  11. 11.
    Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)zbMATHGoogle Scholar
  12. 12.
    Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis, with Examples in Parameter and State Estimation, Robust Control and Robotics. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  13. 13.
    Daumas, M., Rideau, L., Théry, L.: A generic library of floating-point numbers and its application to exact computing. In: Proceedings of the 14th International Conference on Theorem Proving in Higher Order Logics, Edinburgh, Scotland, pp. 169–184 (2001)Google Scholar
  14. 14.
    Boldo, S.: Preuves formelles en arithmétiques à virgule flottante. PhD thesis, École Normale Supérieure de Lyon (2004)Google Scholar
  15. 15.
    Melquiond, G.: De l’arithmétique d’intervalles à la certification de programmes. PhD thesis, École Normale Supérieure de Lyon, Lyon, France (2006)Google Scholar
  16. 16.
    Spiwack, A.: Ajouter des entiers machine à Coq. Technical report (2006)Google Scholar
  17. 17.
    Delahaye, D.: A tactic language for the system Coq. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNCS (LNAI), vol. 1955, pp. 85–95. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Boutin, S.: Using reflection to build efficient and certified decision procedures. In: Theoretical Aspects of Computer Software, pp. 515–529 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Guillaume Melquiond
    • 1
  1. 1.INRIA–Microsoft Research joint centerParc Orsay UniversitéOrsay CedexFrance

Personalised recommendations