The Abella Interactive Theorem Prover (System Description)

  • Andrew Gacek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5195)


Abella [3] is an interactive system for reasoning about aspects of object languages that have been formally presented through recursive rules based on syntactic structure. Abella utilizes a two-level logic approach to specification and reasoning. One level is defined by a specification logic which supports a transparent encoding of structural semantics rules and also enables their execution. The second level, called the reasoning logic, embeds the specification logic and allows the development of proofs of properties about specifications. An important characteristic of both logics is that they exploit the λ-tree syntax approach to treating binding in object languages. Amongst other things, Abella has been used to prove normalizability properties of the λ-calculus, cut admissibility for a sequent calculus and type uniqueness and subject reduction properties. This paper discusses the logical foundations of Abella, outlines the style of theorem proving that it supports and finally describes some of its recent applications.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aydemir, B.E., Bohannon, A., Fairbairn, M., Foster, J.N., Pierce, B.C., Sewell, P., Vytiniotis, D., Washburn, G., Weirich, S., Zdancewic, S.: Mechanized metatheory for the masses: The PoplMark challenge. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 50–65. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Baelde, D., Miller, D.: Least and greatest fixed points in linear logic. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 92–106. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Gacek, A.: The Abella system. Available in source code (2008),
  4. 4.
    Gacek, A., Miller, D., Nadathur, G.: Combining generic judgments with recursive definitions. In: Pfenning, F. (ed.) 23th Symp. on Logic in Computer Science. IEEE Computer Society Press, Los Alamitos (to appear, 2008)Google Scholar
  5. 5.
    Gacek, A., Miller, D., Nadathur, G.: Reasoning in Abella about structural operational semantics specifications. In: LFMTP 2008 (to appear, 2008),
  6. 6.
    McDowell, R., Miller, D.: Reasoning with higher-order abstract syntax in a logical framework. ACM Trans. on Computational Logic 3(1), 80–136 (2002)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Miller, D.: Abstract syntax for variable binders: An overview. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 239–253. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation for logic programming. Annals of Pure and Applied Logic 51, 125–157 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Miller, D., Tiu, A.: A proof theory for generic judgments. ACM Trans. on Computational Logic 6(4), 749–783 (2005)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Nadathur, G., Linnell, N.: Practical higher-order pattern unification with on-the-fly raising. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 371–386. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Nadathur, G., Miller, D.: An Overview of λProlog. In: Fifth International Logic Programming Conference, Seattle, August 1988, pp. 810–827. MIT Press, Cambridge (1988)Google Scholar
  12. 12.
    Nadathur, G., Mitchell, D.J.: System description: Teyjus—A compiler and abstract machine based implementation of Lambda Prolog. In: Ganzinger, H. (ed.) Proceedings of the 16th International Conference on Automated Deduction, Trento, Italy, July 1999, pp. 287–291. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Pfenning, F., Schürmann, C.: System description: Twelf — A meta-logical framework for deductive systems. In: Ganzinger, H. (ed.) 16th Conference on Automated Deduction. LNCS (LNAI), pp. 202–206. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Tait, W.W.: Intensional interpretations of functionals of finite type I. J. of Symbolic Logic 32(2), 198–212 (1967)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Tiu, A.: A Logical Framework for Reasoning about Logical Specifications. PhD thesis, Pennsylvania State University (May 2004)Google Scholar
  16. 16.
    Tiu, A.: A logic for reasoning about generic judgments. In: Momigliano, A., Pientka, B. (eds.) International Workshop on Logical Frameworks and Meta-Languages:Theory and Practice (LFMTP 2006) (2006)Google Scholar
  17. 17.
    Urban, C., Tasson, C.: Nominal techniques in Isabelle/HOL. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 38–53. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Andrew Gacek
    • 1
  1. 1.Department of Computer Science and EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations