A Brief Overview of HOL4

  • Konrad Slind
  • Michael Norrish
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5170)


The HOLF proof assistant supports specification and proof in classical higher order logic. It is the latest in a long line of similar systems. In this short overview, we give an outline of the HOLF system and how it may be applied in formal verification.


Proof Assistant High Order Logic Separation Logic Lambda Calculus Proof Tool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barras, B.: Proving and computing in HOL. In: Aagaard, M.D., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 17–37. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Bishop, S., Fairbairn, M., Norrish, M., Sewell, P., Smith, M., Wansbrough, K.: Rigorous specification and conformance testing techniques for network protocols, as applied to TCP, UDP, and Sockets. In: Proceedings of SIGCOMM. ACM Press, New York (2005)Google Scholar
  3. 3.
    Church, A.: A formulation of the Simple Theory of Types. Journal of Symbolic Logic 5, 56–68 (1940)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gordon, M.J.C., Hunt, W.A., Kaufmann, M., Reynolds, J.: An embedding of the ACL2 logic in HOL. In: Proceedings of ACL2 2006, ACM International Conference Proceeding Series, vol. 205, pp. 40–46. ACM Press, New York (2006)Google Scholar
  5. 5.
    Gordon, M.J.C., Reynolds, J., Hunt, W.A., Kaufmann, M.: An integration of HOL and ACL2. In: Proceedings of FMCAD 2006, pp. 153–160. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  6. 6.
    Gordon, M., Melham, T.: Introduction to HOL, a theorem proving environment for higher order logic. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  7. 7.
    Li, G., Slind, K.: Compilation as rewriting in higher order logic. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603. Springer, Heidelberg (2007)Google Scholar
  8. 8.
    Myreen, M., Gordon, M.: Hoare logic for realistically modelled machine code. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Myreen, M., Slind, K., Gordon, M.: Machine-code verification for multiple architectures: An application of decompilation into logic. In: FMCAD 2008 (submitted 2008)Google Scholar
  10. 10.
    Norrish, M.: A formal semantics for C++. In: Informal proceedings of TTVSI 2008 (2008)Google Scholar
  11. 11.
    Norrish, M., Slind, K.: HOL-4 manuals (1998-2008),
  12. 12.
    Norrish, M., Slind, K.: A thread of HOL development. Computer Journal 45(1), 37–45 (2002)CrossRefzbMATHGoogle Scholar
  13. 13.
    Owens, S.: A sound semantics for OCaml-Light. In: Proceedings of ESOP 2008. LNCS, vol. 4960. Springer, Heidelberg (2008)Google Scholar
  14. 14.
    Sewell, P., Nardelli, F., Owens, S., Peskine, G., Ridge, T., Sarkar, S., Strnisa, R.: Ott: Effective tool support for the working semanticist. In: Proceedings of ICFP 2007. ACM Press, New York (2007)Google Scholar
  15. 15.
    Slind, K., Owens, S., Iyoda, J., Gordon, M.: Proof producing synthesis of arithmetic and cryptographic hardware. Formal Aspects of Computing 19(3), 343–362 (2007)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Konrad Slind
    • 1
  • Michael Norrish
    • 2
  1. 1.School of ComputingUniversity of UtahUSA
  2. 2.National ICTAustralia

Personalised recommendations