Certified Exact Transcendental Real Number Computation in Coq

  • Russell O’Connor
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5170)


Reasoning about real number expressions in a proof assistant is challenging. Several problems in theorem proving can be solved by using exact real number computation. I have implemented a library for reasoning and computing with complete metric spaces in the Coq proof assistant and used this library to build a constructive real number implementation including elementary real number functions and proofs of correctness. Using this library, I have created a tactic that automatically proves strict inequalities over closed elementary real number expressions by computation.


Real Number Rational Number Theorem Prove Regular Function Strict Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bishop, E., Bridges, D.: Constructive Analysis. Grundlehren der mathematischen Wissenschaften, vol. 279. Springer, Heidelberg (1985)zbMATHGoogle Scholar
  2. 2.
    Cruz-Filipe, L.: Constructive Real Analysis: a Type-Theoretical Formalization and Applications. PhD thesis, University of Nijmegen (April 2004)Google Scholar
  3. 3.
    Cruz-Filipe, L., Geuvers, H., Wiedijk, F.: C-CoRN: the constructive Coq repository at Nijmegen. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 88–103. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Cruz-Filipe, L., Spitters, B.: Program extraction from large proof developments. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 205–220. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Cruz-Filipe, L., Letouzey, P.: A large-scale experiment in executing extracted programs. Electr. Notes Theor. Comput. Sci. 151(1), 75–91 (2006)CrossRefzbMATHGoogle Scholar
  6. 6.
    Geuvers, H., Niqui, M.: Constructive reals in Coq: Axioms and categoricity. In: Callaghan, P., Luo, Z., McKinna, J., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp. 79–95. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Gonthier, G.: A computer-checked proof of the four colour theorem. Technical report, Microsoft Research Cambridge (2005)Google Scholar
  8. 8.
    Hales, T.C.: A computer verification of the Kepler conjecture. In: Proceedings of the International Congress of Mathematicians, Beijing, vol. III, pp. 795–804. Higher Ed. Press (2002)Google Scholar
  9. 9.
    Harrison, J.: Theorem Proving with the Real Numbers. Springer, Heidelberg (1998)CrossRefzbMATHGoogle Scholar
  10. 10.
    Jones, C.: Completing the rationals and metric spaces in LEGO. In: The second annual Workshop on Logical environments, New York, NY, USA, pp. 297–316. Cambridge University Press, Cambridge (1993)Google Scholar
  11. 11.
    Julien, N.: Certified exact real arithmetic using co-induction in arbitrary integer base. In: Functional and Logic Programming Symposium (FLOPS). LNCS, Springer, Heidelberg (2008)Google Scholar
  12. 12.
    Muñoz, C., Lester, D.: Real number calculations and theorem proving. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 195–210. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Niqui, M., Wiedijk, F.: The “Many Digits” friendly competition (2005),
  14. 14.
    O’Connor, R.: A monadic, functional implementation of real numbers. Mathematical. Structures in Comp. Sci. 17(1), 129–159 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Odlyzko, A.M., te Riele, H.J.J.: Disproof of the Mertens conjecture. J. Reine Angew. Math. 357, 138–160 (1985)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Richman, F.: Real numbers and other completions. Math. Log. Q. 54(1), 98–108 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    The Coq Development Team. The Coq Proof Assistant Reference Manual – Version V8.0 (April 2004),
  18. 18.
    Weisstein, E.W.: Machin-like formulas. From MathWorld–A Wolfram Web Resource (January 2004),
  19. 19.
    Williams, R.: Arctangent formulas for PI (December 2002),

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Russell O’Connor
    • 1
  1. 1.Institute for Computing and Information Science Faculty of ScienceRadboud University NijmegenThe Netherlands

Personalised recommendations