Advertisement

Secure Microkernels, State Monads and Scalable Refinement

  • David Cock
  • Gerwin Klein
  • Thomas Sewell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5170)

Abstract

We present a scalable, practical Hoare Logic and refinement calculus for the nondeterministic state monad with exceptions and failure in Isabelle/HOL. The emphasis of this formalisation is on large-scale verification of imperative-style functional programs, rather than expressing monad calculi in full generality. We achieve scalability in two dimensions. The method scales to multiple team members working productively and largely independently on a single proof and also to large programs with large and complex properties.

We report on our experience in applying the techniques in an extensive (100,000 lines of proof) case study—the formal verification of an executable model of the seL4 operating system microkernel.

Keywords

Forward Simulation Weak Precondition Hoare Logic Executable Model Machine Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bevier, W.R.: Kit: A study in operating system verification. IEEE Transactions on Software Engineering 15(11), 1382–1396 (1989)CrossRefGoogle Scholar
  2. 2.
    de Roever, W.-P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods and their Comparison. Cambridge Tracts in Theoretical Computer Science, vol. 47. Cambridge University Press, Cambridge (1998)CrossRefzbMATHGoogle Scholar
  3. 3.
    Derrin, P., Elphinstone, K., Klein, G., Cock, D., Chakravarty, M.M.T.: Running the manual: An approach to high-assurance microkernel development. In: Proc. ACM SIGPLAN Haskell Workshop, Portland, OR, USA (September 2006)Google Scholar
  4. 4.
    Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs. Commun. ACM 18(8), 453–457 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Elkaduwe, D., Derrin, P., Elphinstone, K.: A memory allocation model for an embedded microkernel. In: Proc. 1st MIKES, Sydney, Australia, pp. 28–34 (2007)Google Scholar
  6. 6.
    Elphinstone, K., Klein, G., Derrin, P., Roscoe, T., Heiser, G.: Towards a practical, verified kernel. In: Proc. 11th Workshop on Hot Topics in Operating Systems, San Diego, CA, USA (May 2007)Google Scholar
  7. 7.
    Feiertag, R.J., Neumann, P.G.: The foundations of a provably secure operating system (PSOS). In: AFIPS Conf. Proc., 1979 National Comp. Conf., New York, NY, USA, June 1979, pp. 329–334 (1979)Google Scholar
  8. 8.
    Fu, G.: Design and implementation of an operating system in Standard ML. Master’s thesis, Dept.of Information and Computer Sciences, Univ.Hawaii at Manoa (1999)Google Scholar
  9. 9.
    Gargano, M., Hillebrand, M., Leinenbach, D., Paul, W.: On the correctness of operating system kernels. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 1–16. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Hallgren, T., Hook, J., Jones, M.P., Kieburtz, R.B.: An overview of the Programatica Tool Set. In: High Confidence Software and Systems Conference (2004)Google Scholar
  11. 11.
    Hallgren, T., Jones, M.P., Leslie, R., Tolmach, A.: A principled approach to operating system construction in Haskell. In: Proc. ICFP 2005, pp. 116–128. ACM Press, New York (2005)Google Scholar
  12. 12.
    Harrison, W.L., Kieburtz, R.B.: The logic of demand in Haskell. Journal of Functional Programming 15(6), 837–891 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hohmuth, M., Tews, H.: The VFiasco approach for a verified operating system. In: Proc. 2nd ECOOP-PLOS Workshop, Glasgow, UK (October 2005)Google Scholar
  14. 14.
    Huffman, B., Matthews, J., White, P.: Axiomatic constructor classes in Isabelle/HOLCF. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 147–162. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Liedtke, J.: On μ-kernel construction. In: 15th ACM Symposium on Operating System Principles (SOSP) (December 1995)Google Scholar
  16. 16.
    Mossakowski, T., Schröder, L., Goncharov, S.: A generic complete dynamic logic for reasoning about purity and effects. In: Fiadeiro, J., Inverardi, P. (eds.) Proc. FASE 2008. LNCS, vol. 4961, pp. 199–214. Springer, Heidelberg (2008)Google Scholar
  17. 17.
    Shapiro, J.: Coyotos (2006), http://www.coyotos.org
  18. 18.
    Staples, M.: A Mechanised Theory of Refinement. PhD thesis, University of Cambridge (1999)Google Scholar
  19. 19.
    Tuch, H., Klein, G., Norrish, M.: Types, bytes, and separation logic. In: Hofmann, M., Felleisen, M. (eds.) Proc. 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Nice, France, pp. 97–108. ACM Press, New York (2007)Google Scholar
  20. 20.
    Walker, B., Kemmerer, R., Popek, G.: Specification and verification of the UCLA Unix security kernel. Commun. ACM 23(2), 118–131 (1980)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • David Cock
    • 1
  • Gerwin Klein
    • 1
    • 2
  • Thomas Sewell
    • 1
  1. 1.Sydney Research Lab., NICTAAustralia
  2. 2.School of Computer Science and Engineering, UNSWSydneyAustralia

Personalised recommendations