Canonical Big Operators

  • Yves Bertot
  • Georges Gonthier
  • Sidi Ould Biha
  • Ioana Pasca
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5170)


In this paper, we present an approach to describe uniformly iterated “big” operations, like \(\sum_{i=0}^n f(i)\) or max i ∈ I f(i) and to provide lemmas that encapsulate all the commonly used reasoning steps on these constructs.

We show that these iterated operations can be handled generically using the syntactic notation and canonical structure facilities provided by the Coq system. We then show how these canonical big operations played a crucial enabling role in the study of various parts of linear algebra and multi-dimensional real analysis, as illustrated by the formal proofs of the properties of determinants, of the Cayley-Hamilton theorem and of Kantorovitch’s theorem.


Neutral Element Canonical Structure Functional Graph Iterate Operation Abelian Monoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barbanera, F., Berardi, S.: Proof-irrelevance out of Excluded-middle and Choice in the Calculus of Constructions. Journal of Functional Programming 6(3), 519–525 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development, Coq’Art: the Calculus of Inductive Constructions. Springer, Heidelberg (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Biha, S.O.: Formalisation des mathématiques: une preuve du théorème de Cayley-Hamilton. In: Journées Francophones des Langages Applicatifs, pp. 1–14 (2008)Google Scholar
  4. 4.
    Coq development team. The Coq Proof Assistant Reference Manual, version 8.1 (2006)Google Scholar
  5. 5.
    Cowles, J., Gamboa, R., Baalen, J.V.: Using ACL2 Arrays to Formalize Matrix Algebra. In: ACL2 Workshop (2003)Google Scholar
  6. 6.
    Gonthier, G., Mahboubi, A.: A small scale reflection extension for the Coq system. INRIA Technical report,
  7. 7.
    Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A modular formalisation of finite group theory. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 86–101. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Harrison, J.: HOL Light: A Tutorial Introduction. In: FMCAD, pp. 265–269 (1996)Google Scholar
  9. 9.
    Harrison, J.: A HOL Theory of Euclidian Space. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 114–129. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Huet, G., Saïbi, A.: Constructive category theory. In: Proof, language, and interaction: essays in honour of Robin Milner, pp. 239–275. MIT Press, Cambridge (2000)Google Scholar
  11. 11.
    Kammuller, F.: Modular Structures as Dependent Types in Isabelle. In: Altenkirch, T., Naraschewski, W., Reus, B. (eds.) TYPES 1998. LNCS, vol. 1657, pp. 121–132. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Magaud, N.: Ring properties for square matrices,
  13. 13.
    Obua, S.: Proving Bounds for Real Linear Programs in Isabelle/HOL. In: Theorem Proving in Higher-Order Logics, pp. 227–244 (2005)Google Scholar
  14. 14.
    Paşca, I.: A Formal Verification for Kantorovitch’s Theorem. In: Journées Francophones des Langages Applicatifs, pp. 15–29 (2008)Google Scholar
  15. 15.
    Paulson, L.C.: Organizing Numerical Theories Using Axiomatic Type Classes. J. Autom. Reason. 33(1), 29–49 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Pollack, R.: Dependently Typed Records for Representing Mathematical Structure. In: Aagaard, M.D., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 462–479. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Stein, J.: Documentation for the formalization of Linerar Agebra,

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Yves Bertot
    • 1
  • Georges Gonthier
    • 2
  • Sidi Ould Biha
    • 1
  • Ioana Pasca
    • 1
  1. 1.INRIAFrance
  2. 2.Microsoft ResearchUSA

Personalised recommendations