Block Ciphers Implementations Provably Secure Against Second Order Side Channel Analysis

  • Matthieu Rivain
  • Emmanuelle Dottax
  • Emmanuel Prouff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5086)

Abstract

In the recent years, side channel analysis has received a lot of attention, and attack techniques have been improved. Side channel analysis of second order is now successful in breaking implementations of block ciphers supposed to be effectively protected. This progress shows not only the practicability of second order attacks, but also the need for provably secure countermeasures. Surprisingly, while many studies have been dedicated to the attacks, only a few papers have been published about the dedicated countermeasures. In fact, only the method proposed by Schramm and Paar at CT-RSA 2006 enables to thwart second order side channel analysis. In this paper, we introduce two new methods which constitute a worthwhile alternative to Schramm and Paar’s proposal. We prove their security in a strong security model and we exhibit a way to significantly improve their efficiency by using the particularities of the targeted architectures. Finally, we argue that the introduced methods allow us to efficiently protect a wide variety of block ciphers, including AES.

References

  1. 1.
    Akkar, M.-L., Bévan, R., Goubin, L.: Two Power Analysis Attacks against One-Mask Method. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 332–347. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Akkar, M.-L., Goubin, L.: A Generic Protection against High-Order Differential Power Analysis. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 192–205. Springer, Heidelberg (2003)Google Scholar
  3. 3.
    Blömer, J., Guajardo, J., Krummel, V.: Provably Secure Masking of AES. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Chari, S., Jutla, C., Rao, J., Rohatgi, P.: Towards Sound Approaches to Counteract Power-Analysis Attacks. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)Google Scholar
  6. 6.
    Chari, S., Rao, J., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–29. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Coron, J.-S., Prouff, E., Rivain, M.: Side Channel Cryptanalysis of a Higher Order Masking Scheme. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 28–44. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Goubin, L., Patarin, J.: DES and Differential Power Analysis – The Duplication Method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Herbst, P., Oswald, E., Mangard, S.: An AES Smart Card Implementation Resistant to Power Analysis Attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 239–252. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Joye, M., Paillier, P., Schoenmakers, B.: On Second-Order Differential Power Analysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 293–308. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  13. 13.
    Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  14. 14.
    Lemke-Rust, K., Paar, C.: Gaussian Mixture Models for Higher-Order Side Channel Analysis. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 14–27. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Lv, J., Han, Y.: Enhanced DES Implementation Secure Against High-Order Differential Power Analysis in Smartcards. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 195–206. Springer, Heidelberg (2005)Google Scholar
  16. 16.
    Mangard, S., Popp, T., Gammel, B.M.: Side-Channel Leakage of Masked CMOS Gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer, Heidelberg (2005)Google Scholar
  17. 17.
    Oswald, E., Mangard, S.: Template Attacks on Masking–Resistance is Futile. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 562–567. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical Second-Order DPA Attacks for Masked Smart Card Implementations of Block Ciphers. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Peeters, E., Standaert, F.-X., Donckers, N., Quisquater, J.-J.: Improving Higher-Order Side-Channel Attacks with FPGA Experiments. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 309–321. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Power and Electromagnetic Analysis: Improved Model, Consequences and Comparisons. Integration 40(1), 52–60 (2007)Google Scholar
  21. 21.
    Piret, G., Standaert, F.-X.: Security Analysis of Higher-Order Boolean Masking Schemes for Block Ciphers (with Conditions of Perfect Masking). IET Information Security (to appear)Google Scholar
  22. 22.
    Prouff, E., Rivain, M.: A Generic Method for Secure SBox Implementation. In: WISA 2007. LNCS, vol. 4867, pp. 227–244 (2007)Google Scholar
  23. 23.
    Rivain, M., Dottax, E., Prouff, E.: Block Ciphers Implementations Provably Secure Against Second Order Side Channel Analysis. Cryptology ePrint Archive, Report 2008/021 (2008), http://eprint.iacr.org/
  24. 24.
    Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side Channel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Schramm, K., Paar, C.: Higher Order Masking of the AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Standaert, F.-X., Peeters, E., Archambeau, C., Quisquater, J.-J.: Towards Security Limits of Side-Channel Attacks. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 30–45. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Suzuki, D., Saeki, M.: Security Evaluation of DPA Countermeasures Using Dual-Rail Pre-charge Logic Style. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 255–269. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Waddle, J., Wagner, D.: Toward Efficient Second-order Power Analysis. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Matthieu Rivain
    • 1
    • 2
  • Emmanuelle Dottax
    • 2
  • Emmanuel Prouff
    • 2
  1. 1.University of Luxembourg 
  2. 2.Oberthur Card Systems 

Personalised recommendations