Discovery of Gene Regulatory Networks in Aspergillus fumigatus

  • Reinhard Guthke
  • Olaf Kniemeyer
  • Daniela Albrecht
  • Axel A. Brakhage
  • Ulrich Möller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4366)


Aspergillus fumigatus is the most important airborne fungal pathogen causing life-threatening infections in immunosuppressed patients. During the infection process, A. fumigatus has to cope with a dramatic change of environmental conditions, such as temperature shifts. Recently, gene expression data monitoring the stress response to a temperature shift from 30 °C to 48 °C was published. In the present work, these data were analyzed by reverse engineering to discover gene regulatory mechanisms of temperature resistance of A. fumigatus. Time series data, i.e. expression profiles of 1926 differentially expressed genes, were clustered by fuzzy c-means. The number of clusters was optimized using a set of optimization criteria. From each cluster a representative gene was selected by text mining in the gene descriptions and evaluating gene ontology terms. The expression profiles of these genes were simulated by a differential equation system, whose structure and parameters were optimized minimizing both the number of non-vanishing parameters and the mean square error of model fit to the microarray data.


Heat Shock Protein Gene Regulatory Network Temperature Shift Aspergillus Fumigatus Heat Shock Transcription Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brakhage, A.A., Langfelder, K.: The molecular biology of Aspergillus fumigatus. Annual Review of Microbiol 56, 433–455 (2002)CrossRefGoogle Scholar
  2. 2.
    Nierman, W.C., et al.: Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438, 1151–1156 (2005)CrossRefGoogle Scholar
  3. 3.
    Ouyang, M., Welsh, W.J., Georgopoulos, P.: Gaussian mixture clustering and imputation of microarray data. Bioinformatics 20, 917–923 (2004)CrossRefGoogle Scholar
  4. 4.
    Troyanskaya, O., et al.: Missing values methods for DNA microarrays. Bioinformatics 17, 520–525 (2001)CrossRefGoogle Scholar
  5. 5.
    Hathaway, R.J., Hu, Y., Bezdek, J.C.: Local Convergence of Tri-Level Alternating Optimization. Neural Parallel Sci. Comput. 9, 19–28 (2001)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Timm, H.: Fuzzy-Clusteranalyse: Methoden zur Exploration von Daten mit fehlenden Werten sowie klassifizierten Daten, Dissertation, University of Magdeburg, Germany (2002),
  7. 7.
    Bezdek, J.C., Pal, S.K.: Fuzzy models for pattern recognition: methods that search for structures in data. IEEE Press, New York (1992)Google Scholar
  8. 8.
    Bezdek, J.C., Pal, N.R.: Some new indexes of cluster validity. IEEE Trans. Syst. Man Cybern. B28, 301–315 (1998)Google Scholar
  9. 9.
    Bolshakova, N., Azuaje, F.: Cluster validation techniques for genome expression data. Signal Process. 83, 825–833 (2003)CrossRefGoogle Scholar
  10. 10.
    Möller, U., Radke, D.: A cluster validity approach based on nearest neighbor resampling. In: International Conference on Pattern Recognition, Hong Kong, August (2006)Google Scholar
  11. 11.
  12. 12.
  13. 13.
    Yeung, M.K., Tegner, J., Collins, J.J.: Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Natl. Acad. Sci. USA 99, 6163–6168 (2002)CrossRefGoogle Scholar
  14. 14.
    Guthke, R., et al.: Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection. Bioinformatics 21, 1626–1634 (2005)CrossRefGoogle Scholar
  15. 15.
    Paris, S., et al.: Catalases of Aspergillus fumigatus. Infect Immun. 71, 3551–3562 (2003)CrossRefGoogle Scholar
  16. 16.
    Mellado, E., et al.: Targeted gene disruption of the 14-alpha sterol demethylase (cyp51A) in Aspergillus fumigatus and its role in azole drug susceptibility. Antimicrob Agents Chemother. 49, 2536–2538 (2005)CrossRefGoogle Scholar
  17. 17.
    Imazu, H., Sakurai, H.: Saccharomyces cerevisiae heat shock transcription factor regulates cell wall remodeling in response to heat shock. Eukaryot. Cell 4, 1050–1056 (2005)CrossRefGoogle Scholar
  18. 18.
    Brakhage, A.A.: Systemic fungal infections caused by Aspergillus species: epidemiology, infection process and virulence determinants. Curr. Drug Targets 6, 875–886 (2005)CrossRefGoogle Scholar
  19. 19.
    Beney, L., Gervais, P.: Influence of the fluidity of the membrane on the response of microorganisms to environmental stress. Appl. Microbiol. Biotechnol. 57, 34–42 (2001)CrossRefGoogle Scholar
  20. 20.
    Ferreira, M.E., et al.: The ergosterol biosynthesis pathway, transporter genes, and azole resistance in Aspergillus fumigatus. Med. Mycol. 43(Suppl. 1), S313–S319 (2005)CrossRefGoogle Scholar
  21. 21.
    Swan, T.M., Watson, K.: Stress tolerance in a yeast sterol auxotroph: role of ergosterol, heat shock proteins and trehalose. FEMS Microbiol. Lett. 169, 191–197 (1998)CrossRefGoogle Scholar
  22. 22.
    Dahl, C., Biemann, H.-P., Dahl, J.: A protein kinase antigenically related to pp60v-src possibly involved in yeast cell cycle control: Positive in vivo regulation by sterol. Proc. Natl. Acad. Sci. USA 84, 4012–4016 (1987)CrossRefGoogle Scholar
  23. 23.
    Bhabra, R., Askew, D.S.: Thermotolerance and virulence of Aspergillus fumigatus: role of the fungal nucleolus. Med. Mycol. 43, S87–S93 (2005)CrossRefGoogle Scholar
  24. 24.
    Burnie, J.P., et al.: Fungal heat-shock proteins in human disease. FEMS Microbiol. Rev. 30, 53–88 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Reinhard Guthke
    • 1
  • Olaf Kniemeyer
    • 1
  • Daniela Albrecht
    • 1
  • Axel A. Brakhage
    • 1
  • Ulrich Möller
    • 1
  1. 1.Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Beutenbergstr. 11a, 07745 JenaGermany

Personalised recommendations