Display Characteristics Affect Users’ Emotional Arousal in 3D Games

  • Tao Lin
  • Atsumi Imamiya
  • Wanhua Hu
  • Masaki Omata
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4397)


Large computer screens are becoming more and more popular among users, and field of view and physical screen size are important considerations for users and manufacturers. In this study, we investigated the impacts of visual angles and physical screen size on users’ emotional arousal using subjective and physiological measures. The results suggest that larger visual angles cause greater galvanic skin responses (GSR), and the GSR data are mirrored in the subjective ratings of emotional arousal. We also found that physical screen size causes significant effects in subjective ratings. This study contributes to our understanding of how users interact with large displays and helps refine the requirements for what constitutes effective and desirable human–computer interaction (HCI).


Visual Angle Emotional Arousal Galvanic Skin Response Large Display Small Display 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hudlicka, E.: To feel or not to feel: The role of affect in human–computer interaction. International Journal of Human–Computer Studies 59, 1–32 (2003)CrossRefGoogle Scholar
  2. 2.
    Norman, D.A.: Emotion and design: Attractive things work better. Interactions 9(4) (2002)Google Scholar
  3. 3.
    Swaminathan, N., Sato, S.: Interaction design for large displays. Interactions 4(1), 15–24 (1997)CrossRefGoogle Scholar
  4. 4.
    Robertson, G., Czerwinski, M., Baudisch, P., Meyers, B., Robbins, D., Smith, G., Tan, D.S.: Large-display user experience. IEEE Computer Graphics and Applications 25(4), 44–51 (2005)CrossRefGoogle Scholar
  5. 5.
    Patrick, E., Cosgrove, D., Slavkovic, A., Rode, J., Verratti, T., Chiselko, G.: Using a large projection screen as an alternative to head-mounted displays for virtual environments. In: Proc. CHI 2000, ACM Press, New York (2000)Google Scholar
  6. 6.
    Tan, D.S., Stefanucci, J.K., Proffitt, D.R., Pausch, R.: The infocockpit: Providing location and pace to aid human memory. In: Workshop on Perceptive User Interfaces (2001)Google Scholar
  7. 7.
    Tan, D.S., Gergle, D., Scupelli, P., Pausch, R.: With similar visual angles, larger displays improve spatial performance. In: Proc. CHI 2003, ACM Press, New York (2003)Google Scholar
  8. 8.
    Tan, D.S., Gergle, D., Scupelli, P., Pausch, R.: Physically large displays improve path integration in 3D virtual navigation tasks. In: Proc. CHI 2004, pp. 439–446. ACM Press, New York (2004)Google Scholar
  9. 9.
    Czerwinski, M., Smith, G., Regan, T., Meyers, B., Robertson, G., Starkweather, G.: Toward characterizing the productivity benefits of very large displays. In: Proc. Interact 2003, pp. 9–16. IOS Press, Amsterdam (2003)Google Scholar
  10. 10.
    Kimura, D.: Sex and cognition, pp. 1–66. MIT Press, Cambridge (1999)Google Scholar
  11. 11.
    Cutmore, T.R.H., Hine, T.J., Maberly, K.J., Langford, N.M., Hawgood, G.: Cognitive and gender factors influencing navigation in a virtual environment. International Journal of Human–Computer Studies 53, 223–249 (2000)CrossRefGoogle Scholar
  12. 12.
    Tan, D.S., Czerwinski, M., Robertson, G.G.: Women go with the optical flow. In: Proc. CHI 2003, pp. 209–215. ACM Press, New York (2003)Google Scholar
  13. 13.
    Czerwinski, M., Tan, D.S., Robertson, G.G.: Women take a wider view. In: Proc. CHI 2002, pp. 195–202. ACM Press, New York (2002)Google Scholar
  14. 14.
    Childs, I.: HDTV—putting you in the picture. IEE Review 34(7), 261–265 (1988)CrossRefGoogle Scholar
  15. 15.
    Lang, P.J.: The emotion probe. Studies of motivation and attention. American Psychologist 50, 372–385 (1995)CrossRefGoogle Scholar
  16. 16.
    Scherer, K.R.: Neuroscience projections to current debates in emotion psychology. Cognition and Emotion 7, 1–41 (1993)CrossRefGoogle Scholar
  17. 17.
    Larsen, R.J., Diener, E.: Promises and problems with the circumplex model of emotion. In: Clark, M. (ed.) Review of personality and social psychology, vol. 13, pp. 25–59. Sage, Newbury Park (1992)Google Scholar
  18. 18.
    Gray, J.A.: The neuropsychology of temperament. In: Strelau, J., Angleitner, A. (eds.) Explorations in temperament: International perspectives on theory and measurement, pp. 105–128. Plenum Press, New York (1991)Google Scholar
  19. 19.
    Levenson, R.W.: Autonomic nervous system differences among emotions. American Psychological Society 3(1), 23–27 (1992)Google Scholar
  20. 20.
    Ekman, P.: Basic emotions. In: Dalgleish, T., Power, M. (eds.) Handbook of cognition and emotion, John Wiley & Sons, Sussex (1999)Google Scholar
  21. 21.
    Russell, J.A., Weiss, A., Mendelsohn, G.A.: Affect grid: A single-item scale of pleasure and arousal. Journal of Personality and Social Psychology 57(3), 493–502 (1989)CrossRefGoogle Scholar
  22. 22.
    Seyle, H.: The stress of life. McGraw-Hill, New York (1976)Google Scholar
  23. 23.
    Healey, J.A.: Wearable and automotive system for affect recognition from physiology. Doctoral dissertation, Massachusetts Institute of Technology, Cambridge, MA (2000)Google Scholar
  24. 24.
    Picard, R.W.: Affective computing. MIT Press, Cambridge (1997)Google Scholar
  25. 25.
    Lang, P.J., Greenwald, M.K., Bradley, M.M., Hamm, A.O.: Looking at pictures: Affective, facial, visceral, and behavioral reactions. Psychophysiology 30, 261–273 (1993)CrossRefGoogle Scholar
  26. 26.
    Frijda, N.H.: The emotions. Cambridge University Press, Cambridge (1986)Google Scholar
  27. 27.
    Wilson, G.M.: Psychophysiological indicators of the impact of media quality on users. In: Proc. CHI 2001 Doctoral Consortium, pp. 95–96. ACM Press, New York (2001)Google Scholar
  28. 28.
    Wilson, G.M., Sasse, M.A.: Do users always know what’s good for them? Utilizing physiological responses to assess media quality. In: Proc. CHI 2000, Sunderland, UK, pp. 327–339. Springer, Heidelberg (2000)Google Scholar
  29. 29.
    Wilson, G.M., Sasse, M.A.: Investigating the impact of audio degradations on users: subjective vs. objective assessment methods. In: Proc. OZCHI, pp. 135–142 (2000)Google Scholar
  30. 30.
    Ward, R.D., Marsden, P.H., Cahill, B., Johnson, C.: Physiological responses to well-designed and poorly designed interfaces. In: Proc. CHI 2002 Workshop on Physiological Computing, Minneapolis, MN, USA (2002)Google Scholar
  31. 31.
    Ward, R.D., Marsden, P.H.: Physiological responses to different WEB page designs. International Journal of Human-Computer Studies 59(1/2), 199–212 (2003)CrossRefGoogle Scholar
  32. 32.
    Meehan, M., Insko, B., Whitton, M., Brooks, F.: Physiological measures of presence in stressful virtual environments. ACM Transactions on Graphics 21(3), 645–652 (2002)CrossRefGoogle Scholar
  33. 33.
    Mandryk, R.L., Inkpen, K.: Physiological indicators for the evaluation of co-located collaborative play. In: Proc. CSCW (2004)Google Scholar
  34. 34.
    Ravaja, N., Saari, T., Laarni, J., Kallinen, K., Salminen, M.: The psychophysiology of video gaming: Phasic emotional responses to game events. In: Proc. DiGRA (2005)Google Scholar
  35. 35.
    Davidson, R.J., Ekman, P.: Afterward: is there emotion specific physiology. In: Ekman, P., Davidson, R.J. (eds.) The Nature of Emotion, Oxford University Press, Oxford (2004)Google Scholar
  36. 36.
    Picard, R.W., Vyzas, E., Healey, J.: Toward machine emotional intelligence: analysis of affective physiological state. IEEE PAMI 23(10), 1165–1174 (2001)Google Scholar
  37. 37.
    Scheirer, J., Fernandez, R., Klein, J., Picard, R.: Frustrating the user on purpose: a step toward building an affective computer. Interacting with Computers 14(2), 93–118 (2002)Google Scholar
  38. 38.
    Lin, T., Hu, W.H., Omata, M., Imamiya, A.: Do physiological data relate to traditional usability indexes. In: Proc. OZCHI2005, ACM Press, New York (2005)Google Scholar
  39. 39.
    Thought Technology: CardioproTM, version 2.0 installation and user’s manual (2001)Google Scholar
  40. 40.
    Lang, P.J.: Behavioral treatment and bio-behavioral assessment: Computer applications. In: Sidowski, J.B., Johnson, J.H., Williams, T.A. (eds.) Technology in mental health care delivery systems, pp. 119–137. Ablex Publishing, Norwood (1980)Google Scholar
  41. 41.
    Ravaja, N.: Contributions of psychophysiology to media research: Review and recommendations. Media Psychology 6, 193–235 (2004)CrossRefGoogle Scholar
  42. 42.
    Turpin, G.: Effects of stimulus intensity on autonomic responding: The problem of differentiating orienting and defense reflexes. Psychophysiology 23, 1–14 (1986)CrossRefGoogle Scholar
  43. 43.
    Dawson, M.E., Schell, A.M., Filion, D.L.: The electrodermal system. In: Cacioppo, J.T., Tassinary, L.G., Berntson, G.G. (eds.) Handbook of psychophysiology, 2nd edn., pp. 200–223. Cambridge University Press, New York (2000)Google Scholar
  44. 44.
    Wilson, F., Descamps, P.T.: Should we accept anything less than TV quality: visual communication. In: Proc. International Broadcasting Convention (1996)Google Scholar
  45. 45.
    Ravaja, N.: Contributions of psychophysiology to media research: Review and recommendations. Media Psychology 6, 193–235 (2004)CrossRefGoogle Scholar
  46. 46.
    Ravaja, N., Saari, T., Kallinen, K., Laarni, J.: The role of mood in the processing of media messages from a small screen: effects on subjective and physiological responses. Manuscript submitted for publication (2004)Google Scholar
  47. 47.
    Sirevaag, E.J., Kramer, A.E, Wickens, C.D., Reisweber, I., Strayer, D.L., Grenell, J.F.: Assessment of pilot performance and mental workload in rotary wing aircraft. Ergonomics 36, 1121–1140 (1993)CrossRefGoogle Scholar
  48. 48.
    Tattersall, A., Hockey, G.: Level of operator Control and Changes in Heart Rate. Variability during Simulated Flight Maintenance. Human Factors 37(4), 682–698 (1995)CrossRefGoogle Scholar
  49. 49.
    Kramer, A.F.: Physiological metrics of mental workload: A review of recent progress. In: Damos, D.L. (ed.) Multiple-Task performance, pp. 279–328. Taylor and Francis, London (1991)Google Scholar
  50. 50.
    Goldberg, J.H., Kotval, X.P.: Computer interface evaluation using eye movements: methods and constructs. International Journal of Industrial Ergonomics 24, 631–645 (1999)CrossRefGoogle Scholar
  51. 51.
    Hess, E.H.: Pupillometrics. In: Greenfield, N.S., Sternbach, R.A. (eds.) Handbook of psychophysiology, pp. 491–5310. Holt, Rinehart and Winston, New York (1972)Google Scholar
  52. 52.
    Partal, T., Maria, J., Surakka, V.: Pupillary Responses to Emotionally Provocative Stimuli. In: Proceedings of ETRA 2000, Eye Tracking Research and Applications Symposium 2000, Palm Beach Gardens, FL, November, pp. 123–129. ACM Press, New York (2000)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Tao Lin
    • 1
  • Atsumi Imamiya
    • 1
  • Wanhua Hu
    • 1
  • Masaki Omata
    • 1
  1. 1.Department of Computer Science and Media Engineering, University of Yamanashi, Takeda, 4-3-11, Kofu, Yamanashi Prefecture, 400-8511Japan

Personalised recommendations