Advertisement

Balanced Scorecard Simulator — A Tool for Stochastic Business Figures

  • Veit Köppen
  • Marina Allgeier
  • Hans-J. Lenz
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

Long term business success is highly dependent on how fast the business reacts on the changes in the market situation. Those who want to be successful need relevant, in-time and accurate information. Balanced Scorecard Simulator is a management tool that can be used efficiently in the processes of planning, decision and controlling. Based on the Balanced Scorecard concept the program combines imprecise data of business figures with forward and backward computation. It is also possible to find out whether or not the data are consistent with the BSC model. The visualization of the simulation results is done by a Kiviat diagram. The aim of the design is a software tool based on a BSC model and MCMC methods but is easy to handle.

Keywords

Markov Chain Monte Carlo Markov Chain Monte Carlo Method Proposal Distribution Performance Measurement System Balance Scorecard 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. FRIEDAG, H.R. and SCHMIDT, W. (2004): Balanced Scorecard. 2nd edition, Haufe, Planegg.Google Scholar
  2. KAPLAN, R.S. and NORTON, D.P. (1996): The Balanced Scorecard. Translating Strategy Into Action. Harvard Business School Press, Harvard.Google Scholar
  3. KÖPPEN, V. and LENZ, H.-J. (2005): Simulation of Non-linear Stochastic Equation Systems. In: S.M. Ermakov, V.B. Melas and A.N. Pepelyshev (Eds.): Proceeding of the Fifth Workshop on Simulation. NII Chemistry Saint Petersburg University Publishers, St. Petersburg.Google Scholar
  4. LENZ, H.-J. and RÖDEL, E. (1991): Data Quality Control. In: Proceedings of the Annual Meeting of GÖR. Trier.Google Scholar
  5. LIU, J.S. (2001): Monte Carlo Strategies in Scientific Computing. Springer, Berlin.zbMATHGoogle Scholar
  6. MÜLLER, R.M., LENZ, H.-J. and RUHNKE, K. (2003): Ein fuzzybasierter Ansatz zur Durchführung analytischer Prüfungen bei der Existenz von Schätzspielräumen. Die Wirtschaftsprüfung, 10,56, 532–541.Google Scholar
  7. SCHMID, B. (1979): Bilanzmodelle. ETH Zürich, Zürich.Google Scholar
  8. TODOVA, A. and ÜNSAL, A. (2005): Analyse und Modellierung von Einflussgrössen in der Balanced Scorecard. MA Thesis, Freie Universität, Berlin.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Veit Köppen
    • 1
  • Marina Allgeier
    • 1
  • Hans-J. Lenz
    • 1
  1. 1.Institute of Information SystemsFree University BerlinBerlinGermany

Personalised recommendations