Infectious Disease Modeling and the Dynamics of Transmission

  • L. A. Real
  • R. Biek

The dynamics of any infectious disease are heavily dependent on the rate of transmission from infectious to susceptible hosts. In many disease models, this rate is captured in a single compound parameter, the probability of transmission β. However, closer examination reveals how β can be further decomposed into a number of biologically relevant variables, including contact rates among individuals and the probability that contact events actually result in disease transmission. We start by introducing some of the basic concepts underlying the different approaches to modeling disease transmission and by laying out why a more detailed understanding of the variables involved is usually desirable. We then describe how parameter estimates of these variables can be derived from empirical data, drawing primarily from the existing literature on human diseases. Finally, we discuss how these concepts and approaches may be applied to the study of pathogen transmission in wildlife diseases. In particular, we highlight recent technical innovations that could help to overcome some the logistical challenges commonly associated with empirical disease research in wild populations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson RM, May RM (1988) Epidemiological parameters of HIV transmission. Nature 333:514–522.CrossRefPubMedGoogle Scholar
  2. Anderson RM, May RM (1991) Infectious disease of humans: dynamics and control. Oxford University Press, Oxford.Google Scholar
  3. Anderson RM, Trewhella W (1985) Population dynamics of the badger (Meles meles) and the epidemiology of bovine tuberculosis (Mycobacterium bovis). Phil Trans Roy Soc London B 310:227–381.CrossRefGoogle Scholar
  4. Anderson RM, Jackson HC, May RM, Smith AM (1981) Population dynamics of fox rabies in Europe. Nature 289:765–771.CrossRefPubMedGoogle Scholar
  5. Anderson RM, Fraser C, Ghani AC, Donnelly CA, Riley S, Ferguson NM, Leung GM, Lam TH, and Hedley AJ (2004) Epidemiology, transmission dynamics and control of SARS: the 2002–2003 epidemic. Phil Trans Biol Sci 359:1091–1105.CrossRefGoogle Scholar
  6. Aron JL, May RM (1982) The population dynamics of malaria. In: Anderson RM (ed) Population dynamics of infectious diseases. Chapman and Hall, London, pp 139–179.Google Scholar
  7. Begon M, Bennett M, Bowers RG, French NP, Hazel SM, Turner J (2002) A clarification of transmission terms in host-microparasite models: numbers, densities, and areas. Epidemiol Infect 129:147–153.CrossRefPubMedGoogle Scholar
  8. Berger J (1986) Wild horses of the great basin: social competition and population size. University of Chicago Press, Chicago.Google Scholar
  9. Bernoulli D (1760) Essai d’une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l’inoculation pour la prévenir. Mem Math Phys Acad Royal Soc Paris, 1–45.Google Scholar
  10. Caley P, Hone J (2005) Assessing the host disease status of wildlife and the implications for disease control:Mycobacterium bovis infection in feral ferrets. J Appl Ecol 42:708–719.CrossRefGoogle Scholar
  11. Calisher CH, Childs JE, Seney WP, Canestorp KM, Beaty BJ (2000) Dual captures of Colorado rodents: implications for transmission of hantaviruses. Emerg Infect Dis 6:363–369.CrossRefPubMedGoogle Scholar
  12. Childs JE, Curns AT, Dey ME, Real LA, Feinstein L, Bjornstad ON, Krebs JW (2000) Predicting the local dynamics of epizootic rabies among raccoons in the United States. Proc Natl Acad Sci U S A 97:13666–13671.CrossRefPubMedGoogle Scholar
  13. Cross PC, Lloyd-Smith JO, Johnson PLF, Getz WM (2005) Dueling timescales of host movement and disease recovery determine invasion of disease in structured populations. Ecol Lett 8:587–595.CrossRefGoogle Scholar
  14. De Wals P, Hertoghe L, Borlee-Grimee I, De Maeyer-Cleempoels S, Reginster-Haneuse G, Dachy A, Bouckaert A, Lechat MF (1981) Meningococcal disease in Belgium. Secondary attack rate among households, day-care nursery and pre-elementary school contacts. J Infect 3 [Suppl]:53–61.CrossRefPubMedGoogle Scholar
  15. Dietz K (1993) The estimation of the basic reproduction number for infectious diseases. Stat Meth Med Res 2:23–41.CrossRefGoogle Scholar
  16. East ML, Hofer H, Cox JH, Wulle U, Wiik H, Pitra C (2001) Regular exposure to rabies virus and lack of symptomatic disease in Serengeti spotted hyenas. Proc Natl Acad Sci U S A 98:15026–15031.CrossRefPubMedGoogle Scholar
  17. Ferguson NM, Anderson RM (2002) Predicting evolutionary change in the influenza A virus. Nature Med 8:562–563.CrossRefPubMedGoogle Scholar
  18. Ferguson NM, Galvani AP, Bush RM (2003) Ecological and immunological determinants of influenza evolution. Nature 422:428–433.CrossRefPubMedGoogle Scholar
  19. Ferrari MJ, Bjornstad ON, Dobson AP (2005) Estimation and inference of R0 of an infectious pathogen by removal method. Math Biosci 198:14–26.CrossRefPubMedGoogle Scholar
  20. Francis DP, Smith DH, Highton RB, Simpson DIH, Lolik P, Deng IM, and Gillo AL (1978) Ebola fever in the Sudan, 1976: epidemiological aspects of the disease. In: Pattyn SR (ed) Ebola virus haemorrhagic fever. Elsevier, Amsterdam, pp 1–7.Google Scholar
  21. Goh DL, Lee BW, Chia KS, Heng BH, Chen M, Ma S, Tan CC (2004) Secondary household transmission of SARS, Singapore. Emerg Infect Dis 10:232–234.PubMedGoogle Scholar
  22. Goodall J (1986) The chimpanzees of Gombe: patterns of behavior. Belknap Press of Harvard University Press, Cambridge MA.Google Scholar
  23. Gotz H, Ekdahl K, Lindback J, de Jong B, Hedlund KO, Giescke J (2001) Clinical spectrum and transmission characteristics of infection with Norwalk-like virus: findings from a large community outbreak in Sweden. Clin Infect Dis 33:622–628.CrossRefPubMedGoogle Scholar
  24. Greenwood RJ, Newton WE, Pearson GL, Schamber GJ (1997) Population and movement characteristics of radio-collared striped skunks in North Dakota during an epizootic of rabies. J Wild Dis 33:226–241.Google Scholar
  25. Grenfell BT, Dobson AP (1995) The ecology of infectious diseases in natural populations. Cambridge University Press, London.Google Scholar
  26. Guerrant RL (1997) Cryptosporidiosis: an emerging, highly infectious threat. Emerg Infect Dis 3:51–57.CrossRefPubMedGoogle Scholar
  27. Halloran ME (1998) Concepts of infectious disease epidemiology. In: Rothman KJ, Greenland S (eds) Modern epidemiology. Lippincott Williams and Wilkins, Philadelphia, pp 529–554.Google Scholar
  28. Hone J, Pech R, Yip P (1992) Estimation of the dynamics and rate of transmission of classical swine fever (hog cholera) in wild pigs. Epidemiol Infect 108:377–386.CrossRefPubMedGoogle Scholar
  29. Hudson PJ, Rizzoli A, Grenfell BT, Heesterbeek H, Dobson AP (2002) The ecology of wildlife diseases. Oxford University Press, London.Google Scholar
  30. Hutin YJF, Williams J, Malfait P, Pebody R, Loparev VN, Ropp SL, Rodriguez M Knight JC, Tshioko FK, Khan AS, Szczeniowski MV and Esposito JJ et al (2001) Outbreak of human monkeypox Democratic Republic of Congo, 1996–1997. Emerg Infect Dis 7:434–438.PubMedGoogle Scholar
  31. Kendrick P, Eldering G (1939) A study in active immunization against pertussis. Am J Hyg B 38:133.Google Scholar
  32. Lipsitch M, Cohen T, Cooper B, Robins JM, Ma S, James L, Gopalakrishna G, Chew SK, Tan CC, Samore MH, Fisman D, Murray M (2003) Transmission dynamics and control of severe acute respiratory syndrome. Science 300:1966–1970.CrossRefPubMedGoogle Scholar
  33. Longini IM, Nizam A, Xu S, Ungchusak K, Hanshaoworakul W, Cummings DAT, Halloran ME (2005) Containing pandemic influenza at the source. Science 309:1083–1087.CrossRefPubMedGoogle Scholar
  34. Macdonald G (1957) The epidemiology and control of malaria. Oxford University Press, London.Google Scholar
  35. Metzker ML, Mindell DP, Liu XM, Ptak RG, Gibbs RA, Hillis DM (2002) Molecular evidence of HIV-1 transmission in a criminal case. Proc Natl Acad Sci U S A 99:14292–14297.CrossRefPubMedGoogle Scholar
  36. Mloszewski MJ (1983) The behavior and ecology of the African buffalo. Cambridge University Press, Cambridge.Google Scholar
  37. Murray JD, Seward WL (1992) On the spatial spread of rabies among foxes with immunity. J Theor Biol 156:327–348.CrossRefGoogle Scholar
  38. Murray JD, Stanley EA, Brown DL (1986) On the spatial spread of rabies among foxes. Proc R Soc Lond Biol 229:111–150.CrossRefPubMedGoogle Scholar
  39. Nowak MA, May RM (2000) Virus dynamics. Oxford University Press, London.Google Scholar
  40. Palomino MA, Larranaga C, Avendano. LF (2000) Hospital-acquired adenovirus 7 h infantile respiratory infection in Chile. Ped Infect Dis J 19:527–531.CrossRefGoogle Scholar
  41. Plowright W (1968) Rinderpest virus. Monog Virol 3:25–110.Google Scholar
  42. Real LA, Henderson JC, Biek R, Snaman J, Jack TL, Childs JE, Stahl E, Waller L, Tinline R, Nadin-Davis SA (2005) Unifying the spatial population dynamics and molecular evolution of epidemic rabies virus. Proc Natl Acad Sci U S A 102:12107–12111.CrossRefPubMedGoogle Scholar
  43. Ross R (1911) The prevention of malaria. Murray, London.Google Scholar
  44. Russell CA, Smith DL, Childs JE, Real LA (2005) Predictive spatial dynamics and strategic planning for raccoon rabies emergence in Ohio. PLoS 3:1–7.CrossRefGoogle Scholar
  45. Santiago ML, Bibollet-Ruche F, Bailes E, Kamenya S, Muller MN, Lukasik M, Pusey AE, Collins DA, Wrangham RW, Goodall J, Shaw GM, Sharp PM, Hahn BH (2003a) Amplification of a complete simian immunodeficiency virus genome from fecal RNA of a wild chimpanzee. J Virol 77:2233–2242.CrossRefPubMedGoogle Scholar
  46. Santiago ML, Lukasik M, Kamenya S, Li Y, Bibollet-Ruche F, Bailes E, Muller MN, Emery M, Goldenberg DA, Lwanga JS, Ayouba A, Nerrienet E, McClure HM, Heeney JL, Watts DP, Pusey AE, Collins DA, Wrangham RW, Goodall J, Brookfield JF, Sharp PM, Shaw GM, Hahn BH (2003b) Foci of endemic simian immunodeficiency virus infection in wild-living eastern chimpanzees (Pan troglodytes schweinfurthii). J Virol 77:7545–7562.CrossRefPubMedGoogle Scholar
  47. Smith DL, Lucey B, Waller LA, Childs JE, Real LA (2002) Predicting the spatial dynamics of rabies epidemics on heterogeneous landscapes. Proc Natl Acad Sci U S A 99:3668–3672.PubMedGoogle Scholar
  48. Sutherland DR, Spencer PBS, Singleton GR, Taylor AC (2005) Kin interactions and changing social structure during a population outbreak of feral house mice. Mol Ecol 14:2803–2814.CrossRefPubMedGoogle Scholar
  49. Swinton J, Harwood J, Grenfell BT, Gilligan CA (1998) Persistence thresholds for phocine distemper virus infection in harbour sealPhoca vitulina metapopulations. J Anim Ecol 67:54–68.CrossRefGoogle Scholar
  50. Tompkins DM, Greenman JV, Robertson PA, Hudson PJ (2000) The role of shared parasites in the exclusion of wildlife hosts:Heterakis gallinarum in the ring-necked pheasant and the grey partridge. J Anim Ecol 69:829–840.CrossRefGoogle Scholar
  51. Walsh P, Biek R, Real LA (2005) Wave-like spread of Ebola Zaire. PLoS 3:e71.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • L. A. Real
    • 1
  • R. Biek
    • 1
  1. 1.Department of Biology and Center for Disease EcologyEmory UniversityAtlantaUSA

Personalised recommendations