Introduction: Conceptualizing and Partitioning the Emergence Process of Zoonotic Viruses from Wildlife to Humans

  • James E. Childs
  • Jürgen A. Richt
  • John S. Mackenzie
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 315)

This introduction provides a telegraphic overview of the processes of zoonotic viral emergence, the intricacies of host–virus interactions, and the distinct role of biological transitions and modifying factors. The process of emergence is conceptualized as two transition stages which are common and required for all disease emergence, (1) human contact with the infectious agent and (2) cross-species transmission of the agent, and two transition stages which are not required for emergence and appear unavailable to many zoonotic pathogens, (3) sustained human-to-human transmission and (4) genetic adaptation to the human host. The latter two transitions are presumably prerequisites for the pandemic emergence of a pathogen. The themes introduced herein are amplified and explored in detail by the contributors to this volume. Each author explores the mechanisms and unique circumstances by which evolution, biology, history, and current context have contrived to drive the emergence of different zoonotic agents by a series of related events; although recognizable similarities exist among the events leading to emergence the details and circumstances are never repetitive.


West Nile Virus Japanese Encephalitis Virus Rabies Virus Hemorrhagic Fever With Renal Syndrome Severe Acute Respiratory Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allen LJ, and Cormier PJ (1996) Environmentally driven epizootics. Math Biosci 131:51–80.PubMedCrossRefGoogle Scholar
  2. Anderson MG, Frenkel LD, Homann S, Guffey J (2003) A case of severe monkeypox virus disease in an American child: emerging infections and changing professional values. Pediatr Infect Dis J 22:1093–1096.PubMedCrossRefGoogle Scholar
  3. Anderson RM, Jackson HC, May RM, Smith AM (1981) Population dynamics of fox rabies in Europe. Nature 289:765–771.PubMedCrossRefGoogle Scholar
  4. Antia R, Regoes RR, Koella JC, Bergstrom CT (2003) The role of evolution in the emergence of infectious diseases. Nature 426:658–661.PubMedCrossRefGoogle Scholar
  5. Anyamba A, Linthicum KJ, Tucker CJ (2001) Climate-disease connections: Rift Valley Fever in Kenya. Cad Saude Pub 17 Suppl:133–140.Google Scholar
  6. Apetrei C, Robertson DL, Marx PA (2004) The history of SIVS, AIDS: epidemiology, phylogeny and biology of isolates from naturally SIV infected non-human primates (NHP) in Africa. Front Biosci 9:225–254.PubMedCrossRefGoogle Scholar
  7. Arias A, Lazaro E, Escarmis C, Domingo E (2001) Molecular intermediates of fitness gain of an RNA virus: characterization of a mutant spectrum by biological and molecular cloning. J Gen Virol 82:1049–1060.PubMedGoogle Scholar
  8. Badrane H, Tordo N (2001) Host switching in Lyssavirus history from the Chiroptera to the Carnivora orders. J Virol 75:8096–8104.PubMedCrossRefGoogle Scholar
  9. Barclay AJ, Paton DJ (2000) Hendra (equine morbillivirus). Vet J 160:169–176.PubMedCrossRefGoogle Scholar
  10. Basler CF, Reid AH, Dybing JK, Janczewski TA, Fanning TG, Zheng H, Salvatore M, Perdue ML, Swayne DE, Garcia-Sastre A, Palese P, Taubenberger JK (2001) Sequence of the 1918 pandemic influenza virus nonstructural gene (NS) segment and characterization of recombinant viruses bearing the 1918 NS genes. Proc Natl Acad Sci U S A 98:2746–2751.PubMedCrossRefGoogle Scholar
  11. Bell D, Roberton S, Hunter PR (2004) Animal origins of SARS coronavirus: possible links with the international trade in small carnivoRes Philos Trans R Soc Lond B Biol Sci 359:1107–1114.Google Scholar
  12. Bi P, Parton KA (2003) El Nino and incidence of hemorrhagic fever with renal syndrome in China. JAMA 289:176–177.PubMedCrossRefGoogle Scholar
  13. Boelle PY, Cesbron JY, Valleron AJ (2004) Epidemiological evidence of higher susceptibility to vCJD in the young. BMC Infect Dis 4:26.PubMedCrossRefGoogle Scholar
  14. Boots M, Hudson PJ, Sasaki A (2004) Large shifts in pathogen virulence relate to host population structure. Science 303:842–844.PubMedCrossRefGoogle Scholar
  15. Bryant JE, Barrett AD (2003) Comparative phylogenies of yellow fever isolates from Peru and Brazil. FEMS Immunol Med Microbiol 39:103–118.PubMedCrossRefGoogle Scholar
  16. Burke DS (1998) Evolvability of emerging viruses. In: Nelson AM, Horsburgh CR Jr (eds) Pathology of emerging infections 2. American Society for Microbiology, Washington, DC, pp 1–12.Google Scholar
  17. Centers for Disease Control and Prevention (2003) Multistate outbreak of monkeypox–Illinois, Indiana, and Wisconsin 2003. MMWR Morb Mortal Wkly Rep 52:537–540.Google Scholar
  18. Centers for Disease Control and Prevention (2004) Investigation of rabies infections in organ donor and transplant recipients–Alabama, Arkansas, Oklahoma, and Texas 2004. MMWR Morb Mortal Wkly Rep 53:586–589.Google Scholar
  19. Chapman RC (1978) Rabies: decimation of a wolf pack in artic Alaska. Science 201:365–367.PubMedCrossRefGoogle Scholar
  20. Childs JE (2004) Zoonotic viruses of wildlife: hither from yon. Arch Virol Suppl1–11.Google Scholar
  21. Childs JE, Glass GE, Korch GW, LeDuc JW (1989) Effects of hantaviral infection on survival, growth and fertility in wild rat (Rattus norvegicus) populations of Baltimore Maryland. J Wildl Dis 25:469–476.PubMedGoogle Scholar
  22. Childs JE, Curns AT, Dey ME, Real LA, Feinstein L, Bjornstad ON, Krebs JW (2000) Predicting the local dynamics of epizootic rabies among raccoons in the United States. Proc Natl Acad Sci U S A 97:13666–13671.PubMedCrossRefGoogle Scholar
  23. Childs JE, Krebs JW, Smith JS (2002) Public health surveillance and the molecular epidemiology of rabies. In: Leitner T (ed) The molecular epidemiology of human viruses. Kluwer Academic, Dordrecht, pp 273–312.Google Scholar
  24. Chinga-Alayo E, Huarcaya E, Nasarre C, del Aquilla R, Llanos-Cuentas A (2004) The influence of climate on the epidemiology of bartonellosis in Ancash Peru. Trans R Soc Trop Med Hyg 98:116–124.PubMedCrossRefGoogle Scholar
  25. Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PS, Ksiazek TG, Zaki SR, Paul G, Lam SK, Tan CT (1999) Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 354:1257–1259.PubMedCrossRefGoogle Scholar
  26. Claas EC (2000) Pandemic influenza is a zoonosis, as it requires introduction of avian-like gene segments in the human population. Vet Microbiol 74:133–139.PubMedCrossRefGoogle Scholar
  27. Cleaveland S, Laurenson MK, Taylor LH (2001) Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. Philos Trans R Soc Lond B Biol Sci 356:991–999.PubMedGoogle Scholar
  28. Coyne MJ, Smith G, McAllister FE (1989) Mathematic model for the population biology of rabies in raccoons in the mid-Atlantic states. Am J Vet Res 50:2148–2154.PubMedGoogle Scholar
  29. Daniels TJ, Williams DT, Mackenzie JS (2002) Japanese encephalitis virus. In: Morrilla A, Yoon KJ, Zimmerman JJ (eds) Trends in emerging viral infections of swine. Iowa State Press, Ames IA, pp 249–263.Google Scholar
  30. Daoust PY, Wandeler AI, Casey GA (1996) Cluster of rabies cases of probable bat origin among red foxes in Prince Edward Island Canada. J Wildl Dis 32:403–406.PubMedGoogle Scholar
  31. Daszak P, Cunningham AA, Hyatt AD (2001) Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop 78:103–116.PubMedCrossRefGoogle Scholar
  32. Davis CT, Beasley DW, Guzman H, Raj R, D’Anton M, Novak RJ, Unnasch TR, Tesh RB, Barrett AD (2003) Genetic variation among temporally and geographically distinct West Nile virus isolates United States, 2001, 2002. Emerg Infect Dis 9:1423–1429.PubMedGoogle Scholar
  33. De Silva AM, Dittus WP, Amerasinghe PH, Amerasinghe FP (1999) Serologic evidence for an epizootic dengue virus infecting toque macaques (Macaca sinica) at Polonnaruwa Sri Lanka. Am J Trop Med Hyg 60:300–306.PubMedGoogle Scholar
  34. Dietzschold B, Koprowski H (2004) Rabies transmission from organ transplants in the USA. Lancet 364:648–649.PubMedCrossRefGoogle Scholar
  35. Dobson A, Foufopoulos J (2001) Emerging infectious pathogens of wildlife. Philos Trans R Soc Lond B Biol Sci 356:1001–1012.PubMedGoogle Scholar
  36. Downs WG (1982) History of epidemiological aspects of yellow fever. Yale J Biol Med 55:179–185.PubMedGoogle Scholar
  37. Drosten C, Gunther S, Preiser W, van der WS, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA, Berger A, Burguiere AM, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra JC, Muller S, Rickerts V, Sturmer M, Vieth S, Klenk HD, Osterhaus AD, Schmitz H, Doerr HW (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348:1967–1976.PubMedCrossRefGoogle Scholar
  38. Ebel GD, Carricaburu J, Young D, Bernard KA, Kramer LD (2004) Genetic and phenotypic variation of West Nile virus in New York, 2000–2003. Am J Trop Med Hyg 71:493–500.PubMedGoogle Scholar
  39. Engeman RM, Christensen KL, Pipas MJ, Bergman DL (2003) Population monitoring in support of a rabies vaccination program for skunks in Arizona. J Wildl Dis 39:746–750.PubMedGoogle Scholar
  40. Field H, Young P, Yob JM, Mills J, Hall L, Mackenzie J (2001) The natural history of Hendra and Nipah viruses. Microbes Infect 3:307–314.PubMedCrossRefGoogle Scholar
  41. Franke CR, Ziller M, Staubach C, Latif M (2002) Impact of the El Nino/Southern Oscillation on visceral leishmaniasis Brazil. Emerg Infect Dis 8:914–917.PubMedGoogle Scholar
  42. Fraser C, Riley S, Anderson RM, Ferguson NM (2004) Factors that make an infectious disease outbreak controllable. Proc Natl Acad Sci U S A 101:6146–6151.PubMedCrossRefGoogle Scholar
  43. Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF, Cummins LB, Arthur LO, Peeters M, Shaw GM, Sharp PM, Hahn BH (1999) Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature 397:436–441.PubMedCrossRefGoogle Scholar
  44. Gascoyne SC, Laurenson MK, Lelo S, Borner M (1993) Rabies in African wild dogs (Lycaon pictus) in the Serengeti region Tanzania. J Wildl Dis 29:396–402.PubMedGoogle Scholar
  45. Gibbs AJ, Gibbs MJ, Armstrong JS (2004) The phylogeny of SARS coronavirus. Arch Virol 149:621–624.PubMedCrossRefGoogle Scholar
  46. Gibbs MJ, Armstrong JS, Gibbs AJ (2001) The haemagglutinin gene, but not the neuraminidase gene, of ‘Spanish flu’ was a recombinant. Philos Trans R Soc Lond B Biol Sci 356:1845–1855.PubMedCrossRefGoogle Scholar
  47. Gillespie JH (1975) Natural selection for resistance to epidemics. Ecology 56:493–495.CrossRefGoogle Scholar
  48. Gisselquist D (2003) Emergence of the HIV type 1 epidemic in the twentieth century: comparing hypotheses to evidence. AIDS Res Hum Retroviruses 19:1071–1078.PubMedCrossRefGoogle Scholar
  49. Glass GE, Yates TL, Fine JB, Shields TM, Kendall JB, Hope AG, Parmenter CA, Peters CJ, Ksiazek TG, Li CS, Patz JA, Mills JN (2002) Satellite imagery characterizes local animal reservoir populations of Sin Nombre virus in the southwestern United States. Proc Natl Acad Sci U S A 99:16817–16822.CrossRefGoogle Scholar
  50. Gode GR, Bhide NK (1988) Two rabies deaths after corneal grafts from one donor. Lancet 2:791.PubMedCrossRefGoogle Scholar
  51. Goldrick BA (2003) West Nile virus update: a new route of transmission is found. Am J Nurs 103:27.Google Scholar
  52. Gordon ER, Curns AT, Krebs JW, Rupprecht CE, Real LA, Childs JE (2004) Temporal dynamics of rabies in a wildlife host and the risk of cross-species transmission. Epidemiol Infect 132:515–524.PubMedCrossRefGoogle Scholar
  53. Gould EA, de Lamballerie X, Zanotto PM, Holmes EC (2003) Origins, evolution, and vector/host coadaptations within the genusFlavivirus. Adv. Virus Res 59:277–314.CrossRefGoogle Scholar
  54. Grant PR, Grant BR, Petren K (2001) A population founded by a single pair of individuals: establishment, expansion, and evolution. Genetica 112–113:359–382.PubMedCrossRefGoogle Scholar
  55. Gratz NG (1999) Emerging and resurging vector-borne diseases. Ann Rev Entomol 4451–4475.Google Scholar
  56. Gubler DJ (2002) The global emergence/resurgence of arboviral diseases as public health problems. Arch Med Res 33:330–342.PubMedCrossRefGoogle Scholar
  57. Hahn BH, Shaw GM, De Cock KM, Sharp PM (2000) AIDS as a zoonosis: scientific and public health implications. Science 287:607–614.PubMedCrossRefGoogle Scholar
  58. Halloran ME (1998) Concepts of infectious disease epidemiology. In: Rothman KJ, Greenland S (eds) Modern epidemiology. Lippencott Williams Wilkins, Philadelphia, pp 529–554.Google Scholar
  59. Hanna JN, Ritchie SA, Phillips DA, Lee JM, Hills SL, van den Hurk AF, Pyke AT, Johansen CA, and Mackenzie JS (1999) Japanese encephalitis in North Queensland, 1998. Med J Aust 170:533–536.PubMedGoogle Scholar
  60. Heymann DL (2004) The international response to the outbreak of SARS in (2003) Philos Trans R Soc Lond B 359:1127–1129.CrossRefGoogle Scholar
  61. Hinson ER, Shone SM, Zink MC, Glass GE, Klein SL (2004) Wounding: the primary mode of Seoul virus transmission among male Norway rats. Am J Trop Med Hyg 70:310–317.PubMedGoogle Scholar
  62. Hirsch VM, Olmsted RA, Murphey-Corb M, Purcell RH, Johnson PR (1989) An African primate lentivirus (SIVsm) closely related to HIV-2. Nature 339:389–392.PubMedCrossRefGoogle Scholar
  63. Holland J, Spindler K, Horodyski F, Grabau E, Nichol S, VandePol S (1982) Rapid evolution of RNA genomes. Science 215:1577–1585.PubMedCrossRefGoogle Scholar
  64. Holmes EC, Rambaut A (2004) Viral evolution and the emergence of SARS coronavirus. Philos Trans R Soc Lond B Biol Sci 359:1059–1065.PubMedCrossRefGoogle Scholar
  65. Holmes EC, Woelk CH, Kassis R, Bourhy H (2002) Genetic constraints and the adaptive evolution of rabies virus in nature. Virology 292:247–257.PubMedCrossRefGoogle Scholar
  66. Huff JL, Barry PA (2003) B-virus (Cercopithecine herpesvirus 1) infection in humans and macaques: potential for zoonotic disease. Emerg Infect Dis 9:246–250.PubMedGoogle Scholar
  67. Institute of Medicine (2003) Microbial threats to health; emergence, detection, and response. National Academies Press, Washington, DC.Google Scholar
  68. Isakbaeva ET, Khetsuriani N, Beard RS, Peck A, Erdman D, Monroe SS, Tong S, Ksiazek TG, Lowther S, Pandya-Smith I, Anderson LJ, Lingappa J, Widdowson MA (2004) SARS-associated coronavirus transmission United States. Emerg Infect Dis 10:225–231.PubMedGoogle Scholar
  69. Iwamoto M, Jernigan DB, Guasch A, Trepka MJ, Blackmore CG, Hellinger WC, Pham SM, Zaki S, Lanciotti RS, Lance-Parker SE, DiazGranados CA, Winquist AG, Perlino CA, Wiersma S, Hillyer KL, Goodman JL, Marfin AA, Chamberland ME, Petersen LR (2003) Transmission of West Nile virus from an organ donor to four transplant recipients. N Engl J Med 348:2196–2203.PubMedCrossRefGoogle Scholar
  70. Keiser J, Maltese MF, Erlanger TE, Bos R, Tanner M, Singer BH, and Utzinger J (2005) Effect of irrigated rice agriculture on Japanese encephalitis, including challenges and opportunities for integrated vector management. Acta Trop 95:40–57.PubMedCrossRefGoogle Scholar
  71. Kelly-Hope LA, Purdie DM, Kay BH (2004) El Nino Southern Oscillation and Ross River virus outbreaks in Australia. Vect Borne Zoonot Dis 4:210–213.Google Scholar
  72. Kock R, Kebkiba B, Heinonen R, Bedane B (2002) Wildlife and pastoral society–shifting paradigms in disease control. Ann N Y Acad Sci 969:24–33.PubMedCrossRefGoogle Scholar
  73. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204.PubMedCrossRefGoogle Scholar
  74. Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, Hettler D, Davis B, Bowen R, Bunning M (2003) Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 9:311–322.PubMedGoogle Scholar
  75. Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ (2003) A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348:1953–1966.PubMedCrossRefGoogle Scholar
  76. Kuiken T, Fouchier RA, Schutten M, Rimmelzwaan GF, van Amerongen G, van Riel D, Laman JD, de Jong T, van Doornum G, Lim W, Ling AE, Chan PK, Tam JS, Zambon MC, Gopal R, Drosten C, van der WS, Escriou N, Manuguerra JC, Stohr K, Peiris JS, Osterhaus AD (2003) Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362:263–270.PubMedCrossRefGoogle Scholar
  77. Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steele K, Crise B, Volpe KE, Crabtree MB, Scherret JH, Hall RA, Mackenzie JS, Cropp CB, Panigrahy B, Ostlund E, Schmitt B, Malkinson M, Banet C, Weissman J, Komar N, Savage HM, Stone W, McNamara T, Gubler DJ (1999) Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286:2333–2337.PubMedCrossRefGoogle Scholar
  78. Lanciotti RS, Ebel GD, Deubel V, Kerst AJ, Murri S, Meyer R, Bowen M, McKinney N, Morrill WE, Crabtree MB, Kramer LD, Roehrig JT (2002) Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East. Virology 298:96–105.PubMedCrossRefGoogle Scholar
  79. Larkin M (2000) Hunting and logging linked to emerging infectious diseases. Lancet 356:1173.PubMedCrossRefGoogle Scholar
  80. Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, Wong BH, Wong SS, Leung SY, Chan KH, and Yuen KY (2005) Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A 102:14040–14045.PubMedCrossRefGoogle Scholar
  81. Linthicum KJ, Anyamba A, Tucker CJ, Kelley PW, Myers MF, Peters CJ (1999) Climate and satellite indicators to forecast Rift Valley fever epidemics in Kenya. Science 285:397–400.PubMedCrossRefGoogle Scholar
  82. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Wang H, Crameri G, Hu Z, Zhang H, Zhang J, McEachern J, Field H, Daszak P, Eaton BT, Zhang S, Wang LF (2005) Bats are natural reservoirs of SARS-like coronaviruses. Science 310:676–679.PubMedCrossRefGoogle Scholar
  83. Lindsay M, Mackenzie J (1997) Vector-borne viral diseases and climate change in the Australian region: major concerns and the public health response. In: Climate Change and Human Health in the Asia Pacific Region (eds) Curson P, Guest C and Jackson E. Australian Medical Association and Greenpeace International, Canberra, pp 47–62.Google Scholar
  84. Lindsay MD, Broom AK, Wright AE, Johansen CA, Mackenzie JS (1993) Ross River virus isolations from mosquitoes in arid regions of Western Australia: implication of vertical transmission as a means of persistence of the virus. Am J Trop Med Hyg 49:686–696.PubMedGoogle Scholar
  85. Lipsitch M, Sousa AO (2002) Historical intensity of natural selection for resistance to tuberculosis. Genetics 161:1599–1607.PubMedGoogle Scholar
  86. Liu J, Lim SL, Ruan Y, Ling AE, Ng LPF, Drosten C, Liu ET, Stanton LW, Hibberd ML (2005) SARS transmission pattern in Singapore reassessed by viral sequence variation analysis. PLoSMed 2:162–168.Google Scholar
  87. Llyubsky S, Gavrilovskaya I, Luft B, Mackow E (1996) Histopathology ofPeromyscus leucopus naturally infected with pathogenic NY-1 hantaviruses: pathologic markers of HPS infection in mice. Lab Invest 74:627–633.Google Scholar
  88. LoGiudice K, Ostfeld RS, Schmidt KA, Keesing F (2003) The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc Natl Acad Sci U S A 100:567–571.PubMedCrossRefGoogle Scholar
  89. Lounibos LP (2002) Invasions by insect vectors of human disease. Annu Rev Entomol 47:233–266.PubMedCrossRefGoogle Scholar
  90. Lvov DK, Butenko AM, Gromashevsky VL, Kovtunov AI, Prilipov AG, Kinney R, Aristova VA, Dzharkenov AF, Samokhvalov EI, Savage HM, Shchelkanov MY, Galkina IV, Deryabin PG, Gubler DJ, Kulikova LN, Alkhovsky SK, Moskvina TM, Zlobina LV, Sadykova GK, Shatalov AG, Lvov DN, Usachev VE, Voronina AG (2004) West Nile virus and other zoonotic viruses in Russia: examples of ermerging-reemerging situations. Arch Virol [Suppl] 18:85–96.Google Scholar
  91. Mackenzie JS, Johansen CA, Ritchie SA, van den Hurk AF, Hall RA (2002) Japanese encephalitis as an emerging virus: the emergence and spread of Japanese encephalitis virus in Australasia. Curr Topics Microbiol Immunol 267:49–73.Google Scholar
  92. Mackenzie JS, Gubler DJ, and Petersen LR (2004) Emerging flaviviruses: the spread and resurgence of dengue Japanese encephalitis and West Nile viruses. Nature Med 10:S98–S109.PubMedCrossRefGoogle Scholar
  93. Malkinson M, Banet C (2002) The role of birds in the ecology of West Nile virus in Europe and Africa. Curr Top Microbiol Immunol 267:309–322.PubMedGoogle Scholar
  94. May RM, Gupta S, Mclean AR (2001) Infectious disease dynamics: What characterizes a successful invader? Philos Trans R Soc Lond B Biol Sci 356:901–910.PubMedCrossRefGoogle Scholar
  95. Mims CA (1991) The origin of major human infections and the crucial role of person-to-person spread. Epidemiol Infect 106:423–433.PubMedCrossRefGoogle Scholar
  96. Mims CA (1995) Virology research and virulent human pandemics. Epidemiol Infect 115:377–386.PubMedCrossRefGoogle Scholar
  97. Mohd Nor MN, Gan CH, Ong BL (2000) Nipah virus infection of pigs in peninsular Malaysia. Rev Sci Tech 19:160–165.PubMedGoogle Scholar
  98. MonathTP (1989) Yellow fever. In: Monath TP (ed) The arboviruses: epidemiology and ecolog. CRC Press, Boca Raton FL, pp 139–231.Google Scholar
  99. Monroe MC, Morzunov SP, Johnson AM, Bowen MD, Artsob H, Yates T, Peters CJ, Rollin PE, Ksiazek TG, Nichol ST (1999) Genetic diversity and distribution of Peromyscus -borne hantaviruses in North America. Emerg Infect Dis 5:75–86.PubMedCrossRefGoogle Scholar
  100. Morse SS (1995) Factors in the emergence of infectious diseases. Emerg Infect Dis 1:7–15.PubMedCrossRefGoogle Scholar
  101. Nayak DP (2000) Virus morphology, replication, and assembly. In: Hurst CJ (ed) Viral ecology. Academic, New York, pp 63–124.CrossRefGoogle Scholar
  102. Ng SK (2003) Possible role of an animal vector in the SARS outbreak at Amoy Gardens. Lancet 362:570–572.PubMedCrossRefGoogle Scholar
  103. Nichol ST, Arikawa J, Kawaoka Y (2000) Emerging viral diseases. Proc Natl Acad Sci U S A 97:12411–12412.PubMedCrossRefGoogle Scholar
  104. Nicholls N (1986) A method for predicting Murray Valley encephalitis in southeast Australia using the southern oscillation. Aust J Exp Biol Med Sci 64:578–594.Google Scholar
  105. Olsen SJ, Chang HL, Cheung TY, Tang AF, Fisk TL, Ooi SP, Kuo HW, Jiang DD, Chen KT, Lando J, Hsu KH, Chen TJ, Dowell SF (2003) Transmission of the severe acute respiratory syndrome on aircraft. N Engl J Med 349:2416–2422.PubMedCrossRefGoogle Scholar
  106. Parashar UD, Anderson LJ (2004) Severe acute respiratory syndrome: review and lessons of the 2003 outbreak. Int J Epidemiol 33:628–634.PubMedCrossRefGoogle Scholar
  107. Parmenter RR, Yadav EP, Parmenter CA, Ettestad P, Gage KL (1999) Incidence of plague associated with increased winter-spring precipitation in New Mexico. Am J Trop Med Hyg 61:814–821.PubMedGoogle Scholar
  108. Pattison J (1998) The emergence of bovine spongiform encephalopathy and related diseases. Emerg Infect Dis 4:390–394.PubMedCrossRefGoogle Scholar
  109. Patz JA, Daszak P, Tabor GM, Aguirre AA, Pearl M, Epstein J, Wolfe ND, Kilpatrick AM, Foufopoulos J, Molyneux D, Bradley DJ (2004) Unhealthy landscapes: Policy recommendations on land use change and infectious disease emergence. Environ Health Perspect 112:1092–1098.PubMedCrossRefGoogle Scholar
  110. Pavlovsky YN (1957) Human Diseases with Natural Foci (Translated from Russian by D Rottenberg). Foreign Languages Publishing House, Moscow.Google Scholar
  111. Peiris JS, Yu WC, Leung CW, Cheung CY, Ng WF, Nicholls JM, Ng TK, Chan KH, Lai ST, Lim WL, Yuen KY, Guan Y (2004) Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet 363:617–619.PubMedCrossRefGoogle Scholar
  112. Peterson AT, Vieglais DA, Andreasen JK (2003) Migratory birds modeled as critical transport agents for West Nile virus in North America. Vect Borne Zoonot Dis 3:27–37.CrossRefGoogle Scholar
  113. Pinzon JE, Wilson JM, Tucker CJ, Arthur R, Jahrling PB, Formenty P (2004) Trigger events: enviroclimatic coupling of Ebola hemorrhagic fever outbreaks. Am J Trop Med Hyg 71:664–674.PubMedGoogle Scholar
  114. Polis GA, Sears AL, Huxel GR, Strong DR, Maron J (2000) When is a trophic cascade a trophic cascade? Trends Ecol Evol 15:473–475.PubMedCrossRefGoogle Scholar
  115. Rest JS, Mindell DP (2003) SARS associated coronavirus has a recombinant polymerase and coronaviruses have a history of host-shifting. Infect Genet Evol 3:219–225.PubMedCrossRefGoogle Scholar
  116. Riley S, Fraser C, Donnelly CA, Ghani AC, Abu-Raddad LJ, Hedley AJ, Leung GM, Ho LM, Lam TH, Thach TQ, Chau P, Chan KP, Lo SV, Leung PY, Tsang T, Ho W, Lee KH, Lau EM, Ferguson NM, Anderson RM (2003) Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science 300:1961–1966.PubMedCrossRefGoogle Scholar
  117. Ritchie SA, Rochester W (2001) Wind-blown mosquitoes and introduction of Japanese encephalitis into Australia. Emerg Infect Dis 7:900–903.PubMedCrossRefGoogle Scholar
  118. Roelke-Parker ME, Munson L, Packer C, Kock R, Cleaveland S, Carpenter M, O’Brien SJ, Pospischil A, Hofmann-Lehmann R, Lutz H (1996) A canine distemper virus epidemic in Serengeti lions (Panthera leo). Nature 379:441–445.PubMedCrossRefGoogle Scholar
  119. Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Penaranda S, Bankamp B, Maher K, Chen MH, Tong S, Tamin A, Lowe L, Frace M, DeRisi JL, Chen Q, Wang D, Erdman DD, Peret TC, Burns C, Ksiazek TG, Rollin PE, Sanchez A, Liffick S, Holloway B, Limor J, McCaustland K, Olsen-Rasmussen M, Fouchier R, Gunther S, Osterhaus AD, Drosten C, Pallansch MA, Anderson LJ, Bellini WJ (2003) Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300:1394–1399.PubMedCrossRefGoogle Scholar
  120. Sardelis MR, Turell MJ, O’Guinn ML, Andre RG, Roberts DR (2002) Vector competence of three North American strains ofAedes albopictus for West Nile virus. J Am Mosq Control Assoc 18:284–289.PubMedGoogle Scholar
  121. Segal S, Hill AV (2003) Genetic susceptibility to infectious disease. Trends Microbiol 11:445–448.PubMedCrossRefGoogle Scholar
  122. Shaman J, Day JF, Stieglitz M (2002) Drought-induced amplification of Saint Louis encephalitis virus Florida. Emerg Infect Dis 8:575–580.PubMedCrossRefGoogle Scholar
  123. Sillero-Zubiri C, King AA, Macdonald DW (1996) Rabies and mortality in Ethiopian wolves (Canis simensis). J Wildl Dis 32:80–86.PubMedGoogle Scholar
  124. Singh J, Jamaluddin A (2002) Nipah virus infection in swine. In: Morilla A, Yoon KJ, Zimmerman JJ (eds) Trends in emerging viral infections of swine. Iowa State Press, Ames IA, pp 105–116.CrossRefGoogle Scholar
  125. Smith JS, Orciari LA, Yager PA, Seidel HD, Warner CK (1992) Epidemiologic and historical relationships among 87 rabies virus isolates as determined by limited sequence analysis. J Infect Dis 166:296–307.PubMedGoogle Scholar
  126. Song HD, Tu CC, Zhang GW, Wang SY, Zheng K, Lei LC, Chen QX, Gao YW, Zhou HQ, Xiang H, Zheng HJ, Chern SW, Cheng F, Pan CM, Xuan H, Chen SJ, Luo HM, Zhou DH, Liu YF, He JF, Qin PZ, Li LH, Ren YQ, Liang WJ, Yu YD, Anderson L, Wang M, Xu RH, Wu XW, Zheng HY, Chen JD, Liang G, Gao Y, Liao M, Fang L, Jiang LY, Li H, Chen F, Di B, He LJ, Lin JY, Tong S, Kong X, Du L, Hao P, Tang H, Bernini A, Yu XJ, Spiga O, Guo ZM, Pan HY, He WZ, Manuguerra JC, Fontanet A, Danchin A, Niccolai N, Li YX, Wu CI, Zhao GP (2005) Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci U S A 102:2430–2435.PubMedCrossRefGoogle Scholar
  127. Suarez DL, Woolcock PR, Bermudez AJ, Senne DA (2002) Isolation from turkey breeder hens of a reassortant H1N2 influenza virus with swine, human, and avian lineage genes. Avian Dis 46:111–121.PubMedCrossRefGoogle Scholar
  128. Tsai TF (1987) Hemorrhagic fever with renal syndrome: clinical aspects. Lab Ani Sci 37:419–427.Google Scholar
  129. Turell MJ, O’Guinn ML, Dohm DJ, Jones JW (2001) Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus. J Med Entomol 38:130–134.PubMedCrossRefGoogle Scholar
  130. Twiddy SS, Holmes EC (2003) The extent of homologous recombination in members of the genus Flavivirus. J Gen Virol 84:429–440.PubMedCrossRefGoogle Scholar
  131. Wandeler A, Wachendorfer G, Forster U, Krekel H, Schale W, Muller J, Steck F (1974) Rabies in wild carnivores in central Europe. I. Epidemiological studies. Zentralbl Veterinar Med B 21:735–756.Google Scholar
  132. Wang HJ, Zhang RH, Cole J, Chavez F (1999) El Nino and the related phenomenon Southern Oscillation (ENSO): The largest signal in interannual climate variation. Proc Natl Acad Sci U S A 96:11071–11072.PubMedCrossRefGoogle Scholar
  133. Wegbreit J, Reisen WK (2000) Relationships among weather, mosquito abundance, and encephalitis virus activity in California: Kern County 1990–1998. J Am Mosq Control Assoc 16:22–27.PubMedGoogle Scholar
  134. White PJ, Norman RA, Hudson PJ (2002) Epidemiological consequences of a pathogen having both virulent and avirulent modes of transmission: the case of rabbit haemorrhagic disease virus. Epidemiol Infect 129:665–677.PubMedCrossRefGoogle Scholar
  135. Woelk CH, Holmes EC (2002) Reduced positive selection in vector-borne RNA viruses. Mol Biol Evol 19:2333–2336.PubMedGoogle Scholar
  136. Wolfe ND, Kilbourn AM, Karesh WB, Rahman HA, Bosi EJ, Cropp BC, Andau M, Spielman A, Gubler DJ (2001) Sylvatic transmission of arboviruses among Bornean orangutans. Am J Trop Med Hyg 64:310–316.PubMedGoogle Scholar
  137. Wolfe ND, Switzer WM, Carr JK, Bhullar VB, Shanmugam V, Tamoufe U, Prosser AT, Torimiro JN, Wright A, Mpoudi-Ngole E, McCutchan FE, Birx DL, Folks TM, Burke DS, Heneine W (2004) Naturally acquired simian retrovirus infections in central African hunters. Lancet 363:932–937.PubMedCrossRefGoogle Scholar
  138. Woodring, JL, Higgs, S, Beaty, BJ (1996) Natural cycles of vector-borne pathogens. In: Beaty BJ, Marquardt WC (eds) ‘The biology of disease vectors. University Press of Colorado, Niwot CO, pp 51–72.Google Scholar
  139. Yu IT, Li Y, Wong TW, Tam W, Chan AT, Lee JH, Leung DY, Ho T (2004) Evidence of airborne transmission of the severe acute respiratory syndrome virus. N Engl J Med 350:1731–1739.PubMedCrossRefGoogle Scholar
  140. Zaki SR, Greer PW, Coffield LM, Goldsmith CS, Nolte KB, Foucar K, Feddersen RM, Zumwalt RE, Miller GL, Khan AS, Rollin PE, Ksiazek, TG, Nichol ST, Mahy BWJ, Peters CJ (1995) Hantavirus pulmonary syndrome. Pathogenesis of an emerging infectious disease. Am J Pathol 146:552–579.PubMedGoogle Scholar
  141. Zhang XW, Yap YL, Danchin A (2004) Testing the hypothesis of a recombinant origin of the SARS-associated coronavirus. Arch Virol 150:1–20.PubMedCrossRefGoogle Scholar
  142. Zhuang J, Jetzt AE, Sun G, Yu H, Klarmann G, Ron Y, Preston BD, Dougherty JP (2002) Human immunodeficiency virus type 1 recombination: rate, fidelity, and putative hot spots. J Virol 76:11273–11282.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • James E. Childs
    • 1
  • Jürgen A. Richt
    • 2
  • John S. Mackenzie
    • 3
  1. 1.Department of Epidemiology and Public Health and Center for Eco-EpidemiologYale University School of MedicineNew HavenUSA
  2. 2.Virus and Prion Diseases of Livestock Research UnitNational Animal Disease Center USDAUSA
  3. 3.Centre for Emerging Infectious DiseasesAustralian Biosecurity Cooperative Research Centre, Curtin University of TechnologyPerthAustralia

Personalised recommendations