Distributed Verification: Exploring the Power of Raw Computing Power

  • Luboš Brim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4346)


With the increase in complexity of computer systems, it becomes more important to develop formal methods for ensuring their quality and reliability. Various techniques for automated and semi-automated analysis and verification have been successfully applied to real-life computer systems. However, these techniques are computationally hard and memory intensive in general and their applicability to extremely large systems is limited. The major hampering factor is the state space explosion problem due to which large industrial models cannot be efficiently handled by a single state-of-the-art computer.


Model Check Strongly Connect Component Quotient Graph Parent Graph Cycle Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bader, D., Moret, B., Sanders, P.: Algorithm Engineering for Parallel Computation. In: Fleischer, R., Moret, B.M.E., Schmidt, E.M. (eds.) Experimental Algorithmics. LNCS, vol. 2547, pp. 1–23. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Bao, T., Jones, M.: Time-Efficient Model Checking with Magnetic Disks. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 526–540. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Barnat, J., Brim, L., Chaloupka, J.: Parallel Breadth-First Search LTL Model-Checking. In: Proc. 18th IEEE International Conference on Automated Software Engineering, pp. 106–115. IEEE Computer Society Press, Los Alamitos (2003)CrossRefGoogle Scholar
  4. 4.
    Barnat, J., Černá, I.: Distributed Breadth-First Search LTL Model Checking. Formal Methods in System Design, to appear (2006)Google Scholar
  5. 5.
    Barnat, J.: Distributed Memory LTL Model Checking. PhD thesis, Faculty of Informatics, Masaryk University Brno (2004)Google Scholar
  6. 6.
    Behrmann, G., Hune, T.S., Vaandrager, F.W.: Distributed Timed Model Checking – How the Search Order Matters. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 216–231. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Bell, A., Haverkort, B.R.: Sequential and distributed model checking of petri net specifications. Int. J. Softw. Tools Technol. Transfer 7(1), 43–60 (2005)CrossRefGoogle Scholar
  8. 8.
    Blom, S., Orzan, S.: A Distributed Algorithm for Strong Bisimulation Reduction Of State Spaces. Int. J. Softw. Tools Technol. Transfer 7(1), 74–86 (2005)CrossRefGoogle Scholar
  9. 9.
    Bollig, B., Leucker, M., Weber, M.: Parallel Model Checking for the Alternation Free μ-Calculus. In: Margaria, T., Yi, W. (eds.) ETAPS 2001 and TACAS 2001. LNCS, vol. 2031, p. 543. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Brim, L., Černá, I., Krčál, P., Pelánek, R.: Distributed LTL Model Checking Based on Negative Cycle Detection. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FST TCS 2001: Foundations of Software Technology and Theoretical Computer Science. LNCS, vol. 2245, pp. 96–107. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Brim, L., Černá, I., Krčál, P., Pelánek, R.: How to Employ Reverse Search in Distributed Single-Source Shortest Paths. In: Pacholski, L., Ružička, P. (eds.) SOFSEM 2001. LNCS, vol. 2234, pp. 191–200. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Brim, L., Černá, I., Moravec, P., Šimša, J.: Accepting Predecessors are Better than Back Edges in Distributed LTL Model-Checking. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 352–366. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Brim, L., Černá, I., Moravec, P., Šimša, J.: How to Order Vertices for Distributed LTL Model-Checking Based on Accepting Predecessors. In: 4th International Workshop on Parallel and Distributed Methods in verifiCation (PDMC’05), July (2005)Google Scholar
  14. 14.
    Černá, I., Pelánek, R.: Distributed Explicit Fair cycle Detection (Set Based Approach). In: Ball, T., Rajamani, S.K. (eds.) Model Checking Software. LNCS, vol. 2648, pp. 49–73. Springer, Heidelberg (2003)Google Scholar
  15. 15.
    Černá, I., Pelánek, R.: Relating Hierarchy of Temporal Properties to Model Checking. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 318–327. Springer, Heidelberg (2003)Google Scholar
  16. 16.
    Cherkassky, B.V., Goldberg, A.V.: Negative-Cycle Detection Algorithms. Mathematical Programming 85, 277–311 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Courcoubetis, C., Vardi, M.Y., Wolper, P., Yannakakis, M.: Memory-Efficient Algorithms for the Verification of Temporal Properties. Formal Methods in System Design 1, 275–288 (1992)CrossRefGoogle Scholar
  18. 18.
    Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property Specification Patterns for Finite-State Verification. In: Proc. Workshop on Formal Methods in Software Practice, pp. 7–15. ACM Press, New York (1998)CrossRefGoogle Scholar
  19. 19.
    Edelkamp, S., Jabbar, S.: Large-Scale Directed Model Checking LTL. In: Valmari, A. (ed.) Model Checking Software. LNCS, vol. 3925, pp. 1–18. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Fisler, K., Fraer, R., Kamhi, G., Vardi, M.Y., Yang, Z.: Is there a best symbolic cycle-detection algorithm?. In: Margaria, T., Yi, W. (eds.) ETAPS 2001 and TACAS 2001. LNCS, vol. 2031, pp. 420–434. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Garavel, H., Mateescu, R., Smarandache, I.: Parallel State Space Construction for Model-Checking. In: Dwyer, M.B. (ed.) Model Checking Software. LNCS, vol. 2057, pp. 216–234. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Grumberg, O., Heyman, T., Ifergan, N., Schuster, A.: ”achieving speedups in distributed symbolic reachability analysis through asynchronous computation”. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 129–145. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Grumberg, O., Heyman, T., Schuster, A.: Distributed Model Checking for μ-calculus. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 350–362. Springer, Heidelberg (2001)Google Scholar
  24. 24.
    Hammer, M., Weber, M.: ”To Store or Not To Store” reloaded: Reclaiming memory on demand. In: Brim, L., Haverkort, B., Leucker, M., van de Pol, J. (eds.) FMICS 2006 and PDMC 2006. LNCS, vol. 4346, pp. 52–67. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Haverkort, B.R., Bell, A., Bohnenkamp, H.C.: On the Efficient Sequential and Distributed Generation of Very Large Markov Chains From Stochastic Petri Nets.. In: Proc. 8th Int. Workshop on Petri Net and Performance Models, pp. 12–21. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  26. 26.
    Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-Wesley, Reading (2003)Google Scholar
  27. 27.
    Holzmann, G.J., Peled, D., Yannakakis, M.: On Nested Depth First Search. In: Proc. SPIN Workshop on Model Checking of Software, pp. 23–32. American Mathematical Society (1996)Google Scholar
  28. 28.
    Jabbar, S., Edelkamp, S.: Parallel External Directed Model Checking with Linear I/O. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 237–251. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    Pelánek, R.: Typical Structural Properties of State Spaces. In: Graf, S., Mounier, L. (eds.) Model Checking Software. LNCS, vol. 2989, pp. 5–22. Springer, Heidelberg (2004)Google Scholar
  30. 30.
    Ravi, K., Bloem, R., Somenzi, F.: A Comparative Study of Symbolic Algorithms for the Computation of Fair Cycles. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 143–160. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  31. 31.
    Reif, J.: Depth-first Search is Inherently Sequential. Information Proccesing Letters 20(5), 229–234 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Stern, U., Dill, D.L.: Using magnetic disc instead of main memory in the murϕ verifier. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 172–183. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  33. 33.
    Tarjan, R.: Depth First Search and Linear Graph Algorithms. SIAM Journal on Computing, 146–160 (1972)Google Scholar
  34. 34.
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: Proc. IEEE Symposium on Logic in Computer Science, pp. 322–331. IEEE Computer Society Press, Los Alamitos (1986)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Luboš Brim
    • 1
  1. 1.Faculty of Informatics, Masaryk University, BrnoCzech Republic

Personalised recommendations