Advertisement

Order Adaptive Quadrature Rule for Real Time Holography Applications

  • Minvydas Ragulskis
  • Loreta Saunoriene
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4310)

Abstract

Order adaptive algorithm for real time holography applications is presented in this paper. The algorithm is based on Master-Worker parallel computation paradigm. Definite integrals required for visualization of fringes are computed using a novel order adaptive quadrature rule with an external detector defining the order of integration in real time mode. The proposed integration technique can be effectively applied in hybrid numerical-experimental techniques for analysis of micro-mechanical components.

Keywords

Order adaptability real time integration holography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    West, C.M.: Holographic Interferometry. Wiley, New York (1979)Google Scholar
  2. 2.
    Kobayashi, A.S.: Handbook on Experimental Mechanics, 2nd edn. SEM Bethel (1993)Google Scholar
  3. 3.
    Holstein, A., et al.: Hybrid Experimental-numerical Concept of Residual Stress Analysis in Laser Weldments. Experimental Mechanics 41(4), 343–350 (2001)CrossRefGoogle Scholar
  4. 4.
    Field, J.E., et al.: Review of Experimental Techniques for High Rate Deformation and Shock Studies. International Journal of Impact Engineering 30(7), 725–775 (2004)CrossRefGoogle Scholar
  5. 5.
    Ragulskis, M., Palevicius, A., Ragulskis, L.: Plotting Holographic Interferograms for Visualization of Dynamic Results from Finite-element Calculations. International Journal of Numerical Methods in Engineering 56, 1647–1659 (2003)zbMATHCrossRefGoogle Scholar
  6. 6.
    Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. Academic Press, New York (1984)zbMATHGoogle Scholar
  7. 7.
    Ragulskis, M., Ragulskis, L.: Order Adaptive Integration Rule with Equivalently Weighted Internal Nodes. Engineering Computations 23(4), 368–381 (2006)CrossRefGoogle Scholar
  8. 8.
    Mattson, T., Sanders, B., Massingill, B.: Patterns for Parallel Programming. Addison Wesley Professional, Reading (2004)Google Scholar
  9. 9.
    Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Reduced-order Models for MEMS Applications. Nonlinear Dynamics 41, 211–236 (2005)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Minvydas Ragulskis
    • 1
  • Loreta Saunoriene
    • 1
  1. 1.Kaunas University of Technology, Department of Mathematical Research in Systems, Studentu st. 50-222, Kaunas LT-51638Lithuania

Personalised recommendations