Advertisement

Asymmetric Hybrid Machine Translation for Languages with Scarce Resources

  • Algirdas Laukaitis
  • Olegas Vasilecas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4394)

Abstract

Half of the world speaks languages that are out of the machine translation and natural language processing technologies mainstream. Then the choice of natural language technology for a given language pair is greatly impacted by technology and resources available. In this paper we describe a hybrid architecture and technology for rapid development of the machine translation system from English to low-density languages. We use state of the art English language processing technologies and resources to transform (compress) the language into the more abstract form. The abstraction level of the transformation is adapted to our knowledge of the low-density (foreign) language. Then statistical machine translation is used to induce translation rules. All tests and implementations have been done on the English – Lithuanian language pair. Some of the findings of the research can be useful for all, novel and old machine translation language pairs.

Keywords

Hybrid machine translation natural language processing  ontology rapid development low-density languages 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brown, P.F., Della Pietra, V.J., Della Pietra, S.A., Mercer, R.L.: The Mathematics of Statistical Machine Translation: Parameter Estimation. Computational Linguistics 19(2), 263–311 (1993)Google Scholar
  2. 2.
    Cunningham, H.: GATE, a General Architecture for Text Engineering. Computers and the Humanities 36, 223–254 (2002)CrossRefGoogle Scholar
  3. 3.
    Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework and Graphical Development Environment for Robust NLP Tools and Applications. In: Proc. of the 40th Anniversary Meeting of the Association for Computational Linguistics, pp. 168–175 (2002)Google Scholar
  4. 4.
    Erjavec, T.: MULTEXT-East Version 3: Multilingual Morphosyntactic Specifications, Lexicons and Corpora. In: Fourth International Conference on Language Resources and Evaluation, pp. 1535–1538 (2004)Google Scholar
  5. 5.
    Germann, U., Jahr, M., Knight, K., Marcu, D., Yamada, K.: Fast decoding and optimal decoding for machine translation. In: Proceedings of the 39th ACL, Toulouse, France, pp. 228–235 (2001)Google Scholar
  6. 6.
    Foster, G., Gandrabur, S., Langlais, P., Macklovitch, E., Plamondon, P., Russell, G., Simard, M.: Statistical machine translation: Rapid development with limited resources. In: Machine Translation Summit IX, New Orleans, USA, pp. 110–117. MIT Press, Cambridge (2003)Google Scholar
  7. 7.
    Gaizauskas, R., Rodgers, P., Cunningham, H., Humphreys, K.: GATE User Guide. Department of Computer Science, University of Sheeld (1996)Google Scholar
  8. 8.
    IBM. IBM Banking Data Warehouse General Information Manual. Available from on the IBM corporate site, http://www.ibm.com
  9. 9.
    Jurafsky, D., Martin, J.H.: Speech and Language Processing. Prentice-Hall, Englewood Cliffs (2000)Google Scholar
  10. 10.
    Kenji, I., Sumita, E., Matsumoto, Y.: Feedback cleaning of machine translation rules using automatic evaluation. In: Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics, pp. 447–454 (2003)Google Scholar
  11. 11.
    Kishore, P., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of the ACL, pp. 311–318 (2002)Google Scholar
  12. 12.
    Knight, K.: Decoding complexity in wordreplacement translation models. Computational Linguistics 25(4), 607–615 (1999)Google Scholar
  13. 13.
    Lavie, A., Probst, K., Peterson, E., Vogel, S., Levin, L., Font-Llitjos, A., Carbonell, J.A.: Trainable Transfer-based Machine Translation Approach for Languages with Limited Resources. In: Proceedings of Workshop of the European Association for Machine Translation, Valletta, Malta (2004)Google Scholar
  14. 14.
    Miller, G.A.: WordNet: A Dictionary Browser. In: Proc. 1st Int’l Conf. Information in Data, pp. 25–28 (1985)Google Scholar
  15. 15.
    Multext-East Home Page MULTEXT-East: Multilingual Text Tools and Corpora for Central and Eastern European Languages, http://nl.ijs.si/ME/
  16. 16.
    Nirenberg, S.: Machine Translation – Theoretical and Methodological Issues. Cambridge University Press, Cambridge (1987)Google Scholar
  17. 17.
    Official Journal of the European Union, http://eur-lex.europa.eu
  18. 18.
  19. 19.
    Ramshaw, L., Marcus, M.: Text Chunking Using Transformation-Based Learning. In: Proceedings of the Third ACL Workshop on Very Large Corpora (1995)Google Scholar
  20. 20.
    Streiter, O., Leonid, I., Munpyo, H., Ute, H.: Learning, Forgetting and Remembering: Statistical Support for Rule-Based MT. In: Streiter, O., Carl, M., Haller, J. (eds.) Hybrid Approaches to MT (2000)Google Scholar
  21. 21.
    Streiter, O., Leonid, I.: Learning Lessons from Bilingual Corpora: Benefits for Machine Translation. Journal of Corpus Linguistics (2000)Google Scholar
  22. 22.
    The Historical Grammar of Lithuanian language. The Indo-European Database (TIED), http://indoeuro.bizland.com/atree.html
  23. 23.
    Turcato, D., Mc Paul, F., Popowich, F., Toole, J.: A unified examplebased and lexicalist approach to Machine Translation. In: Streiter, O., Carl, M., Haller, J. (eds.) Hybrid Approaches to MT (2000)Google Scholar
  24. 24.

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Algirdas Laukaitis
    • 1
  • Olegas Vasilecas
    • 1
  1. 1.Vilnius Gediminas Technical University, Saulëtekio al. 11, LT-10223 Vilnius-40Lithuania

Personalised recommendations