Advertisement

A Probabilistic Framework for Correspondence and Egomotion

  • Justin Domke
  • Yiannis Aloimonos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4358)

Abstract

This paper is an argument for two assertions: First, that by representing correspondence probabilistically, drastically more correspondence information can be extracted from images. Second, that by increasing the amount of correspondence information used, more accurate egomotion estimation is possible. We present a novel approach illustrating these principles.

We first present a framework for using Gabor filters to generate such correspondence probability distributions. Essentially, different filters ’vote’ on the correct correspondence in a way giving their relative likelihoods. Next, we use the epipolar constraint to generate a probability distribution over the possible motions. As the amount of correspondence information is increased, the set of motions yielding significant probabilities is shown to ’shrink’ to the correct motion.

Keywords

Feature Point Probabilistic Framework Rotational Error Epipolar Line Independent Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clocksin, W.F.: A new method for computing optical flow. In: BMVC (2000)Google Scholar
  2. 2.
    Harris, C.G., Stephens, M.: A combined corner and edge detector. In: AVC88, pp. 147–151 (1988)Google Scholar
  3. 3.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  4. 4.
    Marr, D.: Vision: a computational investigation into the human representation and processing of visual information. W. H. Freeman, San Francisco (1982)Google Scholar
  5. 5.
    Simoncelli, E P, Adelson, E H, Heeger, D J: Probability distributions of optical flow. In: Proc. Conf. on Computer Vision and Pattern Recognition, Mauii, Hawaii, pp. 310–315. IEEE Computer Society Press, Los Alamitos (1991), citeseer.ist.psu.edu/simoncelli91probability.html CrossRefGoogle Scholar
  6. 6.
    Fleet, D.: Disparity from local weighted phase-correlation. In: IEEE International Conference on SMC, pp. 46–48. IEEE Computer Society Press, Los Alamitos (1994)Google Scholar
  7. 7.
    Sanger, T.D.: Stereo disparity computation using gabor filters. Biol. Cybern. 59, 405–418 (1988)CrossRefGoogle Scholar
  8. 8.
    Fleet, D.J., Jepson, A.D.: Computation of component image velocity from local phase information. Int. J. Comput. Vision 5(1), 77–104 (1990)CrossRefGoogle Scholar
  9. 9.
    Nestares, O., Navarro, R., Portilla, J., Tabernero, A.: Efficient spatial-domain implementation of a multiscale image representation based on gabor functions. Journal of Electronic Imaging 7, 166–173 (1998)CrossRefGoogle Scholar
  10. 10.
    Oliensis, J.: A critique of structure-from-motion algorithms. Computer Vision and Image Understanding: CVIU 80(2), 172–214 (2000), citeseer.ist.psu.edu/oliensis00critique.html zbMATHCrossRefGoogle Scholar
  11. 11.
    Makadia, A., Geyer, C., Daniilidis, K.: Radon-based structure from motion without correspondences. In: CVPR (2005)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Justin Domke
    • 1
  • Yiannis Aloimonos
    • 1
  1. 1.Computer Vision Laboratory, Department of Computer Science, University of Maryland, College Park, MD 20742USA

Personalised recommendations