Bi-objective Combined Facility Location and Network Design

  • Eduardo G. Carrano
  • Ricardo H. C. Takahashi
  • Carlos M. Fonseca
  • Oriane M. Neto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4403)

Abstract

This paper presents a multicriterion algorithm for dealing with joint facility location and network design problems, formulated as bi-objective problems. The algorithm is composed of two modules: a multiobjective quasi-Newton algorithm, that is used to find the location of the facilities; and a multiobjective genetic algorithm, which is responsible for finding the efficient topologies. These modules are executed in an iterative way, to make the estimation of whole Pareto set possible. The algorithm has been applied to the expansion of a real energy distribution system. The minimization of financial cost and the maximization of reliability have been considered as the design objectives in this case.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ReVelle, C.S., Eiselt, H.A.: Location analysis: A synthesis and survey. European Journal of Operational Research 165(1), 1–19 (2005)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Carrano, E.G., Soares, L.A.E., Takahashi, R.H.C., Saldanha, R.R., Neto, O.M.: Electric distribution multiobjective network design usign a problem-specific genetic algorithm. IEEE Transactions on Power Delivery 21(2), 995–1005 (2006)CrossRefGoogle Scholar
  3. 3.
    Carrano, E.G., Takahashi, R.H.C., Cardoso, E.P., Neto, O.M., Saldanha, R.R.: Optimal substation location and energy distribution network design using an hybrid GA-BFGS algorithm. IEE Proc. on Generation, Transmission and Distribution 152(6), 919–926 (2005)CrossRefGoogle Scholar
  4. 4.
    Chankong, V., Haimes, Y.Y.: Multiobjective decision making: Theory and methodology. North-Holland, Amsterdam (1983)MATHGoogle Scholar
  5. 5.
    Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear programming: Theory and algorithms, 2nd edn. John Wiley & Sons, Chichester (1993)MATHGoogle Scholar
  6. 6.
    Ehrgott, M.: Multicriteria optimization. Springer, Heidelberg (2000)MATHGoogle Scholar
  7. 7.
    Bernal-Agustín, J.L.: Aplicación de algoritmos genéticos al diseño óptimo de sistemas de distribución de energía eléctrica. Ph.D. dissertation, Zaragoza University, Zaragoza, Spain (1998)Google Scholar
  8. 8.
    Ramírez-Rosado, I., Bernal-Agustín, J.: Genetic algorithms applied to the design of large power distribution systems. IEEE Transactions on Power Systems 13(3), 696–702 (1998)CrossRefGoogle Scholar
  9. 9.
    Carvalho, P., Ferreira, L., Lobo, F., Barruncho, L.: Optimal distribution network expansion planning under uncertainly by evolutionary decision convergence. Electrical Power and Energy Systems 20, 125–129 (1998)CrossRefGoogle Scholar
  10. 10.
    Duan, G., Yu, Y.: Problem-specific genetic algorithm for power transmission system planning. Electric Power Systems Research 61, 41–50 (2002)CrossRefGoogle Scholar
  11. 11.
    Miranda, V., Ranito, J.V., Proença, L.M.: Genetic algorithms in optimal multistage distribution network planning. IEEE Transactions on Power Systems 9(4), 1927–1933 (1994)CrossRefGoogle Scholar
  12. 12.
    Tang, Y.: Power distribution system planning with reliability modelling and optimization. IEEE Transactions on Power Systems 11(1), 181–189 (1996)CrossRefGoogle Scholar
  13. 13.
    Deb, K., Pratap, A., Agrawal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Eduardo G. Carrano
    • 1
    • 3
  • Ricardo H. C. Takahashi
    • 2
  • Carlos M. Fonseca
    • 3
  • Oriane M. Neto
    • 1
  1. 1.Universidade Federal de Minas Gerais - Department of Electrical Engineering 
  2. 2.Universidade Federal de Minas Gerais - Department of Mathematics, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-010Brazil
  3. 3.Universidade do Algarve - Centre for Intelligent Systems, Campus de Gambelas, 8005-139 FAROPortugal

Personalised recommendations