Advertisement

On Convergence of Multi-objective Pareto Front: Perturbation Method

  • Raziyeh Farmani
  • Dragan A. Savic
  • Godfrey A. Walters
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4403)

Abstract

A perturbation method is proposed to detect convergence of the Pareto front for multi-objective algorithms and to investigate its effect on the rate of convergence of the optimization. Conventionally, evolutionary algorithms are allowed to run for a fixed number of trial solutions which can result in a premature convergence or in an unnecessary number of calls to a computationally intensive real world problem. Combination of evolutionary multi-objective algorithms with perturbation method will improve the rate of convergence of the optimization. This is a very important characteristic in reducing number of generations and therefore reducing the computational time which is important in real world problems where cost and time constraint prohibit repeated runs of the algorithm and the simulation. The performance of the method will be examined by its application to two water distribution networks from literature. The results will be compared with previously published results from literature and those generated by evolutionary multi-objective algorithm. It will be shown that the method is able to find the Pareto optimal front with less computational effort.

Keywords

Multiple objective Pareto front convergence water distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Farmani, R., Savic, D.A., Walters, G.A.: Evolutionary multi-objective optimization in water distribution network design. Journal of Engineering Optimisation 37(2), 167–185 (2005)Google Scholar
  2. 2.
    Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for multi-objective Optimization: Formulation, Discussion and Generalization. Proceedings of the International Conference on Genetic Algorithms, vol. 5, 416–423 (1993)Google Scholar
  3. 3.
    Horn, J., Nafploitis, N., Goldberg, D.E.: A niched Pareto genetic algorithm for multi-objective optimisation. In: Proceeding of the first IEEE Conference on Evolutionary Computation, vol. 1, New York, pp. 82–87. IEEE Press, Los Alamitos (1994)Google Scholar
  4. 4.
    Goel, T., Deb, K.: Hybrid methods for multi-objective evolutionary algortihms. KanGAL Report (2001004) (2001)Google Scholar
  5. 5.
    Knowles, J.D., Corne, D.W.: Approximating the non-dominated front using the Pareto archived evolution strategy. Evolutionary Computation Journal 8(2), 149–172 (2000)CrossRefGoogle Scholar
  6. 6.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K., Tsahalis, D., Periaux, J., Papailiou, K., Fogarty, T. (eds.) Evolutionary methods for design, Optimisation and control, Barcelona, Spain (2002)Google Scholar
  7. 7.
    Van Zyl, J., Savic, D.A., Walters, G.A.: Operational Optimization of Water Distribution Systems Using a Hybrid Genetic Algorithm Method. Journal of Water Resources Planning and Management, ASCE 130(2), 160–170 (2005)Google Scholar
  8. 8.
    El-Ghazali, T., Rahoual, M., Mabed, M.H., Dhaenens, C.: A hybrid evolutionary approach for multicriteria optimization problems: Application to the flow shop. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 416–428. Springer, Heidelberg (2001)Google Scholar
  9. 9.
    Farmani R., Prasad, T.Devi, Walters, G.A., Savic, D.A.: Mutli-criteria decision making in water systems. In: Baur, R., Kropp, I., Herz, R. (eds.) Proceedings of the 17th European Junior Scientist workshop(EJSW), Rehabilitation management of urban infrastructure networks, Dresden, September 2003, pp. 103–112 (2003)Google Scholar
  10. 10.
    Murphy, L.J., Simpson, A.R., Dandy, G.C.: Pipe network optimisation using an improved genetic algorithm. Research Report No. R109, Dept of Civil and Environment Engineering, University of Adelaide, Australia (1993)Google Scholar
  11. 11.
    Savic, D.A., Walters, G.A.: Genetic Algorithms for least cost design of water distribution networks. Journal of water resources planning and management, ASCE 123(2), 67–77 (1997)CrossRefGoogle Scholar
  12. 12.
    Lippai, I., Heaney, J.P., Laguna, M.: Robust water system design with commercial intelligent search optimisers. Journal of Computing in Civil Engineering 13(3), 135–143 (1999)CrossRefGoogle Scholar
  13. 13.
    Vairavamoorthy, K., Ali, M.: Optimal design of water distribution systems using genetic algorithms. Computer Aided Civil and Infrastructure Engineering 15, 374–382 (2000)CrossRefGoogle Scholar
  14. 14.
    Wu, Z.Y., Boulos, P.F., Orr, C.H., Ro, J.J.: Using genetic algorithm to rehabilitate distribution systems. Journal AWWA 93(11), 74–85 (2001)Google Scholar
  15. 15.
    Rossman, L.A.: EPANET, users manual. U.S. Envir. Protection Agency, Cincinnati, Ohio (2000)Google Scholar
  16. 16.
    Fujiwara, O., Khang, D.B.: A two Phase decomposition method for optimal design of looped water distribution networks. Water resources research 26(4), 539–549 (1990)CrossRefGoogle Scholar
  17. 17.
    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Fonseca, V.G.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)CrossRefGoogle Scholar
  18. 18.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation 3, 257–271 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Raziyeh Farmani
    • 1
  • Dragan A. Savic
    • 1
  • Godfrey A. Walters
    • 1
  1. 1.Centre for Water Systems, School of Engineering, Computer Science and Mathematics, University of Exeter, Exeter, EX4 4QFUK

Personalised recommendations