Multi-objective Evolutionary Algorithms for Resource Allocation Problems

  • Dilip Datta
  • Kalyanmoy Deb
  • Carlos M. Fonseca
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4403)


The inadequacy of classical methods to handle resource allocation problems (RAPs) draw the attention of evolutionary algorithms (EAs) to these problems. The potentialities of EAs are exploited in the present work for handling two such RAPs of quite different natures, namely (1) university class timetabling problem and (2) land-use management problem. In many cases, these problems are over-simplified by ignoring many important aspects, such as different types of constraints and multiple objective functions. In the present work, two EA-based multi-objective optimizers are developed for handling these two problems by considering various aspects that are common to most of their variants. Finally, the similarities between the problems, and also between their solution techniques, are analyzed through the application of the developed optimizers on two real problems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramson, D., Abela, J.: A parallel genetic algorithm for solving the school timetabling problem. In: Proceedings of 15 Australian Comp. Sc. Conference, Hobart, pp. 1–11 (1992)Google Scholar
  2. 2.
    Al-Attar, A.: White Paper: A hybrid GA-heuristic search strategy. AI Expert, USA (1994)Google Scholar
  3. 3.
    Bhadwal, S., Singh, R.: Carbon sequestration estimates for forestry options under different land-use scenarios in India. Current Sc. 83(11), 1380–1386 (2002)Google Scholar
  4. 4.
    Blum, C., Correia, S., Dorigo, M., Paechter, B., Rossi-Doria, O., Snoek, M.: A GA evolving instructions for a timetable builder. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 120–123. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Colorni, A., Dorigo, M., Maniezzo, V.: Genetic algorithms and highly constrained problems: The time-table case. In: Schwefel, H.-P., Männer, R. (eds.) Parallel Problem Solving from Nature. LNCS, vol. 496, pp. 55–59. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  6. 6.
    Costa, D.: A tabu search algorithm for computing an operational timetable. European Journal of Op. Res. 76(1), 98–110 (1994)MATHCrossRefGoogle Scholar
  7. 7.
    Datta, D., Deb, K.: Design of optimum cross-sections for load-carrying members using multi-objective evolutionary algorithms. Int. J. of Systemics, Cybernetics and Informatics (IJSCI, Jan. 2006), 57-63 (2006)Google Scholar
  8. 8.
    Datta, D., Deb, K., Fonseca, C.M.: Multi-objective evolutionary algorithm for university class timetabling problem. In: Evolutionary Scheduling, Springer, Heidelberg (2006)Google Scholar
  9. 9.
    Datta, D., Deb, K., Fonseca, C.M., Lobo, F., Condado, P.: Multi-objective evolutionary algorithm for land-use management problem, KanGAL Technical Report No. 2006005, IIT-Kanpur (2006)Google Scholar
  10. 10.
    Datta, D., Deb, K., Fonseca, C.M.: Solving class timetabling problem of IIT Kanpur using multi-objective evolutionary algorithm, KanGAL Technical Report No. 2006006, IIT-Kanpur (2006)Google Scholar
  11. 11.
    Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)MATHGoogle Scholar
  12. 12.
    Deb, K., Goel, T.: A hybrid multi-objective evolutionary approach to engineering shape design. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 385–399. Springer, Heidelberg (2001)Google Scholar
  13. 13.
    Ducheyne, E.: Multiple objective forest management using GIS and genetic optimisation techniques, PhD Thesis, Faculty of Agricultural and Applied Biol. Sc., University of Ghent, Belgium (2003)Google Scholar
  14. 14.
    Gautam, N.C., Raghavswamy, V.: Preface. In: Land use/land cover and management practices in India, BS Publications, Hyderabad (2004)Google Scholar
  15. 15.
    Gotlieb, C.C.: The construction of class-teacher timetables. In: Proceedings of IFIP Congress, pp. 73–77. North-Holland, Amsterdam (1962)Google Scholar
  16. 16.
    Huston, M.: The need for science and technology in land management, Online Book - The International Development Research Centre (January 2006),
  17. 17.
    Kerr, S., Liu, S., Pfaff, A.S.P., Hughes, R.F.: Carbon dynamics and land-use choices: building a regional-scale multidisciplinary model. Journal of Environmental Management 69, 25–37 (2003)CrossRefGoogle Scholar
  18. 18.
    Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto archived evolution strategy. Evo. Comput. 8(2), 149–172 (2000)CrossRefGoogle Scholar
  19. 19.
    Lawrie, N.L.: An integer programming model of a school timetabling problem. The Computer Journal 12, 307–316 (1969)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Liu, S., Bliss, N.: Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition. Global Biochem. Cycles 17(2), 1074 (2003)CrossRefGoogle Scholar
  21. 21.
    Liu, S., Liu, J., Loveland, T.R.: Spatial-temporal carbon sequestration under land use and land cover change. In: Proceedings of 12th International Conference on Geoinformatics - Geospatial Information Research: Bridging the Pacific and Atlantic University of Gävle, Sweden, pp. 525–532 (2004)Google Scholar
  22. 22.
    Looi, C.: Neural network methods in combinatorial optimization. Computers and Op. Res. 19(3/4), 191–208 (1992)CrossRefMATHGoogle Scholar
  23. 23.
    Matthews, K.B., Craw, S., MacKenzie, I., Elder, S., Sibbald, A.R.: Applying genetic algorithms to land use planning. In: Proc. of the 18th Workshop of the UK Planning and Scheduling Special Interest Group, University of Salford, UK, pp. 109–115 (1999)Google Scholar
  24. 24.
    Matthews, K.B., Sibbald, A.R., Craw, S.: Implementation of a spatial decision support system for rural land use planning: integrating GIS and environmental models with search and optimisation algorithms. Comp. & Electr. in Agri. 23, 9–26 (1999)CrossRefGoogle Scholar
  25. 25.
    Matthews, K.B., Buchan, K., Sibbald, A.R., Craw, S.: Using soft-systems methods to evaluate the outputs from multi-objective land use planning tools. In: Integrated Assessment and Decision Support: Proceedings of the 1st biennial meeting of the International Environmental Modelling and Software Society, vol. 3, University of Lugano, Switzerland, pp. 247–252 (2002)Google Scholar
  26. 26.
    Piola, R.: Evolutionary solutions to a highly constrained combinatorial problem. In: Proceedings of IEEE Conference on Evol. Comput (First World Congress on Computational Intelligence), vol. 1 Orlando, Florida, pp. 446–450 (1994)Google Scholar
  27. 27.
    Seixas, J., Nunes, J.P., Lourenço, P., Lobo, F., Condado, P.: GeneticLand: Modeling land use change using evolutionary algorithms. In: Proc. of the 45th Congress of the European Regional Sc. Asso., Land Use and Water Management in a Sustainable Network Society, Vrije Universiteit Amsterdam, pp. 23–27 (2005)Google Scholar
  28. 28.
    Silva, J.D.L., Burke, E.K., Petrovic, S.: An introduction to multiobjective metaheuristics for scheduling and timetabling. In: Proceedings of Metaheuristic for Multiobjective Optimisation. Lecture Notes in Economics and Math. Systems, vol. 535, pp. 91–129. Springer, Heidelberg (2004)Google Scholar
  29. 29.
    Stewart, T.J., Janssen, R., Herwijnen, M.V.: A genetic algorithm approach to multiobjective land use planning. Comp. & Op. Res. 31, 2293–2313 (2004)MATHCrossRefGoogle Scholar
  30. 30.
    Tripathy, A.: School timetabling - A case in large binary integer linear programming. Management Science 30(12), 1473–1489 (1984)MATHCrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Dilip Datta
    • 1
  • Kalyanmoy Deb
    • 1
  • Carlos M. Fonseca
    • 2
  1. 1.Indian Institute of Technology Kanpur, Kanpur - 208 016India
  2. 2.Universidade do Algarve, Campus de Gambelas, 8000-117 FaroPortugal

Personalised recommendations